Lie–Yamaguti algebras related to g2
2005, Journal of Pure and Applied Algebra
Abstract
Lie-Yamaguti algebras (or generalized Lie triple systems) are intimately related to reductive homogeneous spaces. Simple Lie-Yamaguti algebras whose standard enveloping Lie algebra is the simple Lie algebra of type G2 are described, making use of the octonions. These examples reveal the much greater complexity of these systems, compared to Lie triple systems.
References (26)
- m, •) is a Lie algebra and [x, y, z] = (x • y) • z for any x, y, z ∈ m, or (2) (m, •) is a Malcev algebra and [x, y, z] = -(x•y)•z -x•(y •z)+y •(x•z) for any x, y, z ∈ m, or
- Moreover, in all three cases, Der(m, •) = Der(m, •, [ , , ])
- = D(m, m). Then, in all three cases, [L m , L m ] ⊆ L m + D(m, m) and D(m, m) ⊆ L m + [L m , L m ].
- Therefore, Lie(m, •) = L m + D(m, m). But for i = 2, . . . , 8, D(m i , m i ) = ad h i | m i and L m i + D(m i , m i ) does not fill so(m i , κ) = Lie(m i , κ) (by dimension count). Hence they are not homogeneous. References
- P. Benito, C. Draper, and A. Elduque, Models of the octonions and G2, Linear Algebra Appl. 371 (2003), 333-359.
- M. Bremner and I.R. Hentzel, Invariant nonassociative algebra structure on ir- reducible representations of simple Lie algebras, Experimental Mathematics 13 (2004), no. 2, 231-256.
- J. Dixmier, Certaines algèbres non associatives simples définies par la transvec- tion des formes binaires, J. Reine Angew. Math. 346 (1984), 110-128.
- C. Draper, Espacios homogéneos reductivos y álgebras no asociativas (Spanish), Ph.D. thesis, Universidad de La Rioja, 2001.
- E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Mat. Sbornik N.S. 30(72) (1952), 349-462 (3 plates).
- A. Elduque and H. C. Myung, Color algebras and affine connections on S 6 , J. Algebra 149 (1992), no. 1, 234-261.
- Alberto Elduque and Fernando Montaner, A note on derivations of simple alge- bras, J. Algebra 165 (1994), no. 3, 636-644.
- A. Elduque and H. C. Myung, Colour algebras and Cayley-Dickson algebras, Proc. Roy. Soc. Edinburgh Sect. A 125 (1995), no. 6, 1287-1303.
- N. Jacobson, Composition algebras and their automorphisms, Rend. Circ. Mat. Palermo (2) 7 (1958), 55-80.
- Lie algebras, Dover Publications Inc., New York, 1979, Republication of the 1962 original.
- M. Kikkawa, Geometry of homogeneous Lie loops, Hiroshima Math. J. 5 (1975), no. 2, 141-179.
- Remarks on solvability of Lie triple algebras, Mem. Fac. Sci. Shimane Univ. 13 (1979), 17-22.
- On Killing-Ricci forms of Lie triple algebras, Pacific J. Math. 96 (1981), no. 1, 153-161.
- Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential geometry. Vol. II, Interscience Tracts in Pure and Applied Mathematics, No. 15 Vol. II, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1969.
- M. K. Kinyon and A. Weinstein, Leibniz algebras, Courant algebroids, and mul- tiplications on reductive homogeneous spaces, Amer. J. Math. 123 (2001), no. 3, 525-550.
- H. C. Myung and A. A. Sagle, On the construction of reductive Lie-admissible algebras, J. Pure Appl. Algebra 53 (1988), no. 1-2, 75-91.
- K. Nomizu, Invariant affine connections on homogeneous spaces, Amer. J. Math. 76 (1954), 33-65.
- A. A. Sagle, On anti-commutative algebras and general Lie triple systems, Pacific J. Math. 15 (1965), 281-291.
- A note on simple anti-commutative algebras obtained from reductive homogeneous spaces, Nagoya Math. J. 31 (1968), 105-124.
- R. D. Schafer, An introduction to nonassociative algebras, Dover Publications Inc., New York, 1995, Corrected reprint of the 1966 original.
- A. A. Sagle and D. J. Winter, On homogeneous spaces and reductive subalgebras of simple Lie algebras, Trans. Amer. Math. Soc. 128 (1967), 142-147.
- K. Yamaguti, On the Lie triple system and its generalization, J. Sci. Hiroshima Univ. Ser. A 21 (1957/1958), 155-160.