The Concept of Symmetry and the Theory of Perception
2021, Frontiers in Computational Neuroscience
https://doi.org/10.3389/FNCOM.2021.681162Abstract
Perceptual constancy refers to the fact that the perceived geometrical and physical characteristics of objects remain constant despite transformations of the objects such as rigid motion. Perceptual constancy is essential in everything we do, like recognition of familiar objects and scenes, planning and executing visual navigation, visuomotor coordination, and many more. Perceptual constancy would not exist without the geometrical and physical permanence of objects: their shape, size, and weight. Formally, perceptual constancy and permanence of objects are invariants, also known in mathematics and physics as symmetries. Symmetries of the Laws of Physics received a central status due to mathematical theorems of Emmy Noether formulated and proved over 100 years ago. These theorems connected symmetries of the physical laws to conservation laws through the least-action principle. We show how Noether's theorem is applied to mirror-symmetrical objects and establishes mental shape repr...
References (80)
- Adelson, E. (2000). Lightness perception and lightness illusions. The new cognitive neurosciences, 2 , 339-351.
- Alekseev, V. M. (1969). Quasi-random dynamical systems. Mathematical notes of the Academy of Sciences of the USSR, 6 (4), 749-753.
- Alhazen. (1989). The book of optics. books 1-3 (A. I. Sabra, Trans.). London, England: The Warburg Institute. (Original work published 1083)
- Arnold, V. (1989). Mathematical methods of classical mechanics (Vol. 60). New York: Springer-Verlag.
- Ashton, A. C. (2008). Conservation laws and non-lie symmetries for linear pdes. Journal of Nonlinear Mathematical Physics, 15 (3), 316-332.
- Barron, J. T., & Malik, J. (2015). Shape, illumination and reflectance from shading. IEEE PAMI , 37 , 1670-1687.
- Ben-Yosef, G., & Ben-Shahar, O. (2012). Tangent bundle curve completion with locally connected parallel networks. Neural computation, 24 (12), 3277-3316.
- Biederman, I., & Gerhardstein, P. C. (1993). Recognizing depth-rotated objects: evidence and conditions for three-dimensional viewpoint invariance. Journal of Experimental Psychology: Human perception and performance, 19 (6), 1162- 1182.
- Cassirer, E. (1944). The concept of group and the theory of perception. Philosophy and phenomenological research, 5 (1), 1-36.
- Chan, M. W., Stevenson, A. K., Li, Y., & Pizlo, Z. (2006). Binocular shape constancy from novel views: the role of a priori constraints. Perception & Psychophysics, 68 , 1124-1139.
- Chater, N. (1996). Reconciling simplicity and likelihood principles in perceptual organization. Psychological Review , 103 , 566-581.
- Dold, D., Kungl, A. F., Sacramento, J., Petrovici, M. A., Schindler, K., Binas, J., . . . Senn, W. (2019). Lagrangian dynamics of dendritic microcircuits enables real-time backpropagation of errors. In Cosyne. Lisbon, Portugal.
- D'Zmura, M., & Iverson, G. (1993a). Color constancy. i. basic theory of two-stage linear recovery of spectral descriptions for lights and surfaces. JOSA A, 10 (10), 2148-2165.
- D'Zmura, M., & Iverson, G. (1993b). Color constancy. ii. results for two-stage linear recovery of spectral descriptions for lights and surfaces. JOSA A, 10 (10), 2166-2180.
- D'Zmura, M., & Iverson, G. (1994). Color constancy. iii. general linear recovery of spectral descriptions for lights and surfaces. JOSA A, 11 (9), 2389-2400.
- Edelman, S., & Bülthoff, H. H. (1992). Orientation dependence in the recognition of familiar and novel views of 3d objects. Vision Research, 32 , 2385-2400.
- Farah, M. J., Rochlin, R., & Klein, K. L. (1994). Orientation invariance and geometric primitives in shape recognition. Cognitive Science, 18 , 325-344.
- Feldman, J., & Singh, M. (2006). Bayesian estimation of the shape skeleton. PNAS , 103 , 18014-18019.
- Feynman, R. P. (1965). The character of physical law. Cambridge, MA: MIT Press.
- Foster, D. (1978). Visual aparent motion and the calculus of variations. In E. Leeuwen- berg & H. Buffart (Eds.), Formal theories of visual perception (p. 67-82). Chich- ester: Wiley.
- Foster, D. H. (1975). Visual apparent motion and some preferred paths in the rotation group so(3). Biological Cybernetics, 18 , 81-89.
- Foster, D. H. (2011). Color constancy. Vision research, 51 (7), 674-700.
- Foster, D. H., Amano, K., & Nascimento, S. M. (2016). Time-lapse ratios of cone excitations in natural scenes. Vision research, 120 , 45-60.
- Foster, D. H., & Nascimento, S. M. (1994). Relational colour constancy from invariant cone-excitation ratios. Proceedings of the Royal Society of London. Series B: Biological Sciences, 257 (1349), 115-121.
- Gilchrist, A., & Jacobsen, A. (1983). Lightness constancy hrough a veiling luminance. Journal of experimental psychology: human perception and performance, 9 (6), 936-944.
- Goldstein, H. (1980). Classical mechanics. Reading, MA: Addison-Wesley.
- Greydanus, S., Dzamba, M., & Yosinski, J. (2019). Hamiltonian neural networks. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc adn E. Fox, & R.Garnett (Eds.), Advances in neural information processing systems 32 (pp. 15379-15389). Curran Associates, Inc.
- Grünwald, P. D. (2007). The minimum description length principle. Cambridge, MA: MIT Press.
- Grünwald, P. D., Myung, J., & Pitt, M. (2005). Advances in minimum description length theory and applications. Cambridge, MA: MIT Press.
- Hanc, J., Tuleja, S., & Hancova, M. (2004). Mental rotation of three-dimensional objects. American journal of physics, 171 (3972), 428-435.
- Holway, A. H., & Boring, E. G. (1941). Determinants of apparent visual size with distance variant. The American Journal of Psychology, 54 (1), 21-37.
- Horn, B., & Schunck, B. (1981). Determining optical flow. Artificial Intelligence, 17 , 185-203.
- Huh, D., & Sejnowski, T. J. (2016). Conservation law for self-paced movements. Proceedings of the National Academy of Sciences, 113 , 8831-8836.
- Iverson, G., & D'Zmura, M. (1994). Criteria for color constancy in trichromatic bilinear models. JOSA A, 11 (7), 1970-1975.
- Jayadevan, V., Sawada, T., Delp, E., & Pizlo, Z. (2018). Perception of 3d symmetrical and nearly symmetrical shapes. Symmetry, 10 , 344.
- Knill, D. C., & Richards, W. (1996). Perception as Bayesian inference. Cambridge: Cambridge University Press.
- Koffka, K. (1935). Principles of gestalt psychology. London: Kegan Paul.
- Lemons, D. S. (1997). Perfect form: variational principles, methods, and applications in elementary physics. Princeton, NJ: Princeton University Press.
- Li, Y., & Pizlo, Z. (2011). Depth cues vs. simplicity principle in 3d shape perception. Topics in Cognitive Science, 3 , 667-685.
- Li, Y., Pizlo, Z., & Steinman, R. M. (2009). A computational model that recovers the 3d shape of an object from a single 2d retinal representation. Vision Research, 49 , 979-991.
- Li, Y., Sawada, T., Shi, Y., Kwon, T., & Pizlo, Z. (2011). A bayesian model of binocular perception of 3d mirror symmetric polyhedra. Journal of Vision, 11 , 1-20.
- Li, Y., Sawada, T., Shi, Y., Steinman, R. M., & Pizlo, Z. (2013). Symmetry is the sine qua non of shape. In S. Dickinson & Z. Pizlo (Eds.), Shape perception in human and computer vision (pp. 21-40). London, UK: Springer.
- Lutter, M., Ritter, C., & Peters, J. (2019). Deep lagrangian networks: using physics as a model prior for deep learning. arXiv preprint arXiv:1907.04490 .
- Mach, E. (1914). The analysis of sensations, and the relation of the physical to the psychical. Open Court Publishing Company.
- Maruya, A., & Zaidi, Q. (2020). Mental geometry of three-dimensional size perception. Journal of Vision, 20 (8), 1-16.
- McCloskey, M. (1983). Intuitive physics. Scientific american, 248 (4), 122-131.
- McKee, S. P., & Smallman, H. S. (1998). Size and speed constancy. In W. . Kulikowski (Ed.), Perceptual constancy (p. 373-408). New York, NY: Cambridge University Press.
- Michaux, V., Jayadevan, V., Delp, E., & Pizlo, Z. (2016). Figure-ground organization based on three-dimensional symmetry. Journal of Electronic Imaging, 25 , 061606.
- Michaux, V., Kumar, V., Jayadevan, V., Delp, E., & Pizlo, Z. (2017). Binocular 3d object recovery using a symmetry prior. Symmetry, 9 , 64.
- Noether, E. (1918). Invariante variationsprobleme. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1918 , 235-257.
- Noether, E. (1971). Invariant variation problems. Transport Theory and Statistical Physics, 1 (3), 186-207.
- Pizlo, Z. (2001). Perception viewed as an inverse problem. Vision Research, 41 , 3145-3161.
- Pizlo, Z. (2008). 3D shape: Its unique place in visual perception. Cambridge, MA: MIT Press.
- Pizlo, Z. (2019). Unifying physics and psychophysics on the basis of symmetry, least-action≈ simplicity principle, and conservation laws≈ veridicality. The American Journal of Psychology, 132 (1), 1-25.
- Pizlo, Z., Li, Y., Sawada, T., & Steinman, R. M. (2014). Making a machine that sees like us. Oxford: Oxford University Press.
- Pizlo, Z., & Stevenson, A. K. (1999). Shape constancy from novel views. Perception & Psychophysics, 61 , 1299-1307.
- Poggio, T., & Koch, C. (1985). Ill-posed problems in early vision: From computational theory to analogue networks. Proceedings of the Royal Society of London B , 226 , 303-323.
- Poggio, T., Torre, V., & Koch, C. (1985). Computational vision and regularization theory. Nature, 317 , 314-319.
- Rock, I., & DiVita, J. (1987). A case of viewer-centered object perception. Cognitive Psychology, 19 , 280-293.
- Rock, I., DiVita, J., & Barbeito, R. (1981). The effect on form perception of change of orientation in the third dimension. Journal of Experimental Psychology: Human Perception and Performance, 7 , 719-732.
- Rock, I., Wheeler, D., & Tudor, L. (1989). Can we imagine how objects look from other viewpoints? Cognitive Psychology, 21 , 185-210.
- Rosen, J. (2008). Symmetry rules. Heidelberg, Germany: Springer.
- Sawada, T., Li, Y., & Pizlo, Z. (2011). Any pair of 2d curves is consistent with a 3d symmetric interpretation. Symmetry, 3 , 365-388.
- Schwichtenberg, J. (2018). Physics from symmetry. Springer.
- Shepard, R. N., & Cooper, L. A. (1982). Mental images and their transformations. Cambridge, Mass: MIT Press.
- Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171 (3972), 701-703.
- Spelke, E. S. (1990). Principles of object perception. Cognitive Science, 14 , 29-56.
- Spelke, E. S., Katz, G., Purcell, S. E., Erlich, S. M., & Breinlinger, K. (1994). Early knowledge of object motion: continuity and inertia. Cognition, 51 , 131-176.
- Spelke, E. S., & Kinzler, K. D. (2007). Core knowledge. Developmental Science, 10 , 89-96.
- Stocker, A. A. (2006). Analog integrated 2-d optical flow sensor. Analog Integrated Circuits and Signal Processing, 46 , 121-138.
- Thompson, D. W. (1942). On growth and form. New York: Dover.
- Ullman, S. (1979). The interpretation of visual motion. Cambridge, M.A.: MIT Press.
- Helmholtz, H. (1924/1886). Helmholtz's treatise on physiological optics. Menasha, Wisconsin: Optical Society of America, George Banta Publishing Company.
- Walsh, V., & Kulikowski, J. (1998). Perceptual constancy. NY: Cambridge University Press.
- Wandell, B. (1995). Foundations of vision. Sunderland, MA: Sinauer.
- Weiss, I. (1997). A perspective 3d formalism for shape from shading. In Proceedings of DARPA Image Understanding Workshop, 2 , 1393-1402.
- Weiss, Y., Simoncelli, E., & Adelson, E. (2002). Motion illusions as optimal percept. Nature Neuroscience, 5 (6), 598-604.
- Wertheimer, M. (1923). Laws of organization in perceptual forms, English translation (1938) in A source book of gestalt psychology (W.D. Ellis, Ed.). New York: Harcourt Brace.
- Weyl, H. (1966). The classical groups: their invariants and representations. Princeton, New Jersey: Princeton University Press.
- Wigner, E. (1967). Symmetries and reflections. Bloomington, Indiana: Indiana University Press.