A strict implication calculus for compact Hausdorff spaces
2019, Annals of Pure and Applied Logic
Abstract
We introduce a simple modal calculus for compact Hausdorff spaces. The language of our system extends that of propositional logic with a strict implication connective, which, as shown in earlier work, algebraically corresponds to the notion of a subordination on Boolean algebras. Our base system is a strict implication calculus SIC, to which we associate a variety SIA of strict implication algebras. We also study the symmetric strict implication calculus S 2 IC, which is an extension of SIC, and prove that S 2 IC is strongly sound and complete with respect to de Vries algebras. By de Vries duality, this yields completeness of S 2 IC with respect to compact Hausdorff spaces. Since some of the defining axioms of de Vries algebras are Π 2-sentences, we develop the corresponding theory of non-standard rules, which we term Π 2-rules. We study the resulting inductive elementary classes of algebras, and give a general criterion of admissibility for Π 2-rules. We also compare our approach to approaches in the literature that are related to our work. 1
References (29)
- Ph. Balbiani, T. Tinchev, and D. Vakarelov. Modal logics for region-based theories of space. Fund. Inform., 81(1-3):29-82, 2007.
- J. L. Bell and A. B. Slomson. Models and ultraproducts: An introduction. North-Holland Publishing Co., Amsterdam-London, 1969.
- G. Bezhanishvili. Locally finite varieties. Algebra Universalis, 46(4):531-548, 2001.
- G. Bezhanishvili. Stone duality and Gleason covers through de Vries duality. Topology Appl., 157(6):1064-1080, 2010.
- G. Bezhanishvili, N. Bezhanishvili, T. Santoli, and Y. Venema. A simple propositional calculus for compact Hausdorff spaces. ILLC Prepublication Series, PP-2017-6.
- G. Bezhanishvili, N. Bezhanishvili, S. Sourabh, and Y. Venema. Irreducible equivalence relations, Gleason spaces, and de Vries duality. Appl. Categ. Structures, 25(3):381-401, 2017.
- P. Blackburn, M. de Rijke, and Y. Venema. Modal logic. Cambridge University Press, Cambridge, 2001.
- J. P. Burgess. Decidability for branching time. Studia Logica, 39(2-3):203-218, 1980.
- S. Celani. Quasi-modal algebras. Math. Bohem., 126(4):721-736, 2001.
- A. Chagrov and M. Zakharyaschev. Modal logic, volume 35 of Oxford Logic Guides. The Clarendon Press, New York, 1997.
- C. C. Chang and H. J. Keisler. Model theory, volume 73 of Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam, third edition, 1990.
- H. de Vries. Compact spaces and compactifications. An algebraic approach. PhD thesis, University of Amsterdam, 1962. Available at the ILLC Historical Dissertations Series (HDS-23).
- I. Düntsch and D. Vakarelov. Region-based theory of discrete spaces: a proximity ap- proach. Ann. Math. Artif. Intell., 49(1-4):5-14, 2007.
- R. Engelking. General topology, volume 6. Heldermann Verlag, Berlin, second edition, 1989.
- L. Esakia. Heyting algebras I. Duality theory (Russian). "Metsniereba", Tbilisi, 1985.
- D. Gabbay. An irreflexivity lemma with applications to axiomatizations of conditions on tense frames. In Aspects of philosophical logic (Tübingen, 1977), volume 147 of Synthese Library, pages 67-89. Reidel, Dordrecht-Boston, Mass., 1981.
- D. Gabbay and I. Hodkinson. An axiomatization of the temporal logic with Until and Since over the real numbers. J. Logic Comput., 1(2):229-259, 1990.
- G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, and D. S. Scott. Continu- ous lattices and domains, volume 93 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 2003.
- A. M. Gleason. Projective topological spaces. Illinois J. Math., 2:482-489, 1958.
- V. Goranko and S. Passy. Using the universal modality: gains and questions. J. Logic Comput., 2(1):5-30, 1992.
- P. Jipsen. Discriminator varieties of Boolean algebras with residuated operators. In C. Rauszer, editor, Algebraic Methods in Logic and Computer Science, volume 28 of Banach Center Publications, pages 239-252. Polish Academy of Sciences, 1993.
- P. T. Johnstone. Stone spaces. Cambridge University Press, Cambridge, 1982.
- H. Rasiowa and R. Sikorski. The mathematics of metamathematics. Monografie Matem- atyczne, Tom 41. Państwowe Wydawnictwo Naukowe, Warsaw, 1963.
- T. Santoli. Logics for compact Hausdorff spaces via de Vries duality. Master's Thesis, ILLC, University of Amsterdam, 2016.
- M. H. Stone. The theory of representations for Boolean algebras. Trans. Amer. Math. Soc., 40(1):37-111, 1936.
- M. H. Stone. Topological representation of distributive lattices and Brouwerian logics. Časopis Pešt. Mat. Fys., 67:1-25, 1937.
- D. Vakarelov. Region-based theory of space: algebras of regions, representation theory, and logics. In Mathematical problems from applied logic. II, volume 5 of Int. Math. Ser. (N. Y.), pages 267-348. Springer, New York, 2007.
- Y. Venema. Derivation rules as anti-axioms in modal logic. J. Symbolic Logic, 58(3):1003- 1034, 1993.
- Y. Venema. Algebras and coalgebras. In Handbook of modal logic, volume 3 of Stud. Log. Pract. Reason., pages 331-426. Elsevier B. V., Amsterdam, 2007.