Academia.eduAcademia.edu

Outline

A strict implication calculus for compact Hausdorff spaces

2019, Annals of Pure and Applied Logic

Abstract

We introduce a simple modal calculus for compact Hausdorff spaces. The language of our system extends that of propositional logic with a strict implication connective, which, as shown in earlier work, algebraically corresponds to the notion of a subordination on Boolean algebras. Our base system is a strict implication calculus SIC, to which we associate a variety SIA of strict implication algebras. We also study the symmetric strict implication calculus S 2 IC, which is an extension of SIC, and prove that S 2 IC is strongly sound and complete with respect to de Vries algebras. By de Vries duality, this yields completeness of S 2 IC with respect to compact Hausdorff spaces. Since some of the defining axioms of de Vries algebras are Π 2-sentences, we develop the corresponding theory of non-standard rules, which we term Π 2-rules. We study the resulting inductive elementary classes of algebras, and give a general criterion of admissibility for Π 2-rules. We also compare our approach to approaches in the literature that are related to our work. 1

References (29)

  1. Ph. Balbiani, T. Tinchev, and D. Vakarelov. Modal logics for region-based theories of space. Fund. Inform., 81(1-3):29-82, 2007.
  2. J. L. Bell and A. B. Slomson. Models and ultraproducts: An introduction. North-Holland Publishing Co., Amsterdam-London, 1969.
  3. G. Bezhanishvili. Locally finite varieties. Algebra Universalis, 46(4):531-548, 2001.
  4. G. Bezhanishvili. Stone duality and Gleason covers through de Vries duality. Topology Appl., 157(6):1064-1080, 2010.
  5. G. Bezhanishvili, N. Bezhanishvili, T. Santoli, and Y. Venema. A simple propositional calculus for compact Hausdorff spaces. ILLC Prepublication Series, PP-2017-6.
  6. G. Bezhanishvili, N. Bezhanishvili, S. Sourabh, and Y. Venema. Irreducible equivalence relations, Gleason spaces, and de Vries duality. Appl. Categ. Structures, 25(3):381-401, 2017.
  7. P. Blackburn, M. de Rijke, and Y. Venema. Modal logic. Cambridge University Press, Cambridge, 2001.
  8. J. P. Burgess. Decidability for branching time. Studia Logica, 39(2-3):203-218, 1980.
  9. S. Celani. Quasi-modal algebras. Math. Bohem., 126(4):721-736, 2001.
  10. A. Chagrov and M. Zakharyaschev. Modal logic, volume 35 of Oxford Logic Guides. The Clarendon Press, New York, 1997.
  11. C. C. Chang and H. J. Keisler. Model theory, volume 73 of Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam, third edition, 1990.
  12. H. de Vries. Compact spaces and compactifications. An algebraic approach. PhD thesis, University of Amsterdam, 1962. Available at the ILLC Historical Dissertations Series (HDS-23).
  13. I. Düntsch and D. Vakarelov. Region-based theory of discrete spaces: a proximity ap- proach. Ann. Math. Artif. Intell., 49(1-4):5-14, 2007.
  14. R. Engelking. General topology, volume 6. Heldermann Verlag, Berlin, second edition, 1989.
  15. L. Esakia. Heyting algebras I. Duality theory (Russian). "Metsniereba", Tbilisi, 1985.
  16. D. Gabbay. An irreflexivity lemma with applications to axiomatizations of conditions on tense frames. In Aspects of philosophical logic (Tübingen, 1977), volume 147 of Synthese Library, pages 67-89. Reidel, Dordrecht-Boston, Mass., 1981.
  17. D. Gabbay and I. Hodkinson. An axiomatization of the temporal logic with Until and Since over the real numbers. J. Logic Comput., 1(2):229-259, 1990.
  18. G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, and D. S. Scott. Continu- ous lattices and domains, volume 93 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 2003.
  19. A. M. Gleason. Projective topological spaces. Illinois J. Math., 2:482-489, 1958.
  20. V. Goranko and S. Passy. Using the universal modality: gains and questions. J. Logic Comput., 2(1):5-30, 1992.
  21. P. Jipsen. Discriminator varieties of Boolean algebras with residuated operators. In C. Rauszer, editor, Algebraic Methods in Logic and Computer Science, volume 28 of Banach Center Publications, pages 239-252. Polish Academy of Sciences, 1993.
  22. P. T. Johnstone. Stone spaces. Cambridge University Press, Cambridge, 1982.
  23. H. Rasiowa and R. Sikorski. The mathematics of metamathematics. Monografie Matem- atyczne, Tom 41. Państwowe Wydawnictwo Naukowe, Warsaw, 1963.
  24. T. Santoli. Logics for compact Hausdorff spaces via de Vries duality. Master's Thesis, ILLC, University of Amsterdam, 2016.
  25. M. H. Stone. The theory of representations for Boolean algebras. Trans. Amer. Math. Soc., 40(1):37-111, 1936.
  26. M. H. Stone. Topological representation of distributive lattices and Brouwerian logics. Časopis Pešt. Mat. Fys., 67:1-25, 1937.
  27. D. Vakarelov. Region-based theory of space: algebras of regions, representation theory, and logics. In Mathematical problems from applied logic. II, volume 5 of Int. Math. Ser. (N. Y.), pages 267-348. Springer, New York, 2007.
  28. Y. Venema. Derivation rules as anti-axioms in modal logic. J. Symbolic Logic, 58(3):1003- 1034, 1993.
  29. Y. Venema. Algebras and coalgebras. In Handbook of modal logic, volume 3 of Stud. Log. Pract. Reason., pages 331-426. Elsevier B. V., Amsterdam, 2007.