Academia.eduAcademia.edu

Outline

CINET: A cyberinfrastructure for network science

2012, 2012 IEEE 8th International Conference on E-Science

Abstract

Networks are an effective abstraction for representing real systems. Consequently, network science is increasingly used in academia and industry to solve problems in many fields. Computations that determine structure properties and dynamical behaviors of networks are useful because they give insights into the characteristics of real systems. We introduce a newly built and deployed cyberinfrastructure for network science (CINET) that performs such computations, with the following features: (i) it offers realistic networks from the literature and various random and deterministic network generators; (ii) it provides many algorithmic modules and measures to study and characterize networks; (iii) it is designed for efficient execution of complex algorithms on distributed high performance computers so that they scale to large networks; and (iv) it is hosted with web interfaces so that those without direct access to high performance computing resources and those who are not computing experts can still reap the system benefits. It is a combination of application design and cyberinfrastructure that makes these features possible. To our knowledge, these capabilities collectively make CINET novel. We describe the system and illustrative use cases, with a focus on the CINET user.

References (42)

  1. "#()"(#%0'?$"%@?-/$0' :"#$%&'?$"%@?-/$0' :*%.%0'?$"%@?-/$0'
  2. $+%#,-!'?$"%@?-/$0' :-),$"%0'?$"%@?-/5"' :)
  3. $&%' C+*("!' ?(0.&$/,%' :"(/,$!'
  4. Anonymous. National Research Council Committee on Network Science for Future Army Applications. In Network Science. The National Academies Press, 2005.
  5. M. A. Batagelj V. Pajek -Program for Large Network Analysis.
  6. Connections, 21(2):47-57, 1998.
  7. C. L. Borgman, J. C. Wallis, M. S. Mayernik, and A. Pepe. Drowning in data: digital library architecture to support scientific use of embedded sensor networks. In Proc. JCDL 2007, pages 269-277, 2007.
  8. C. Campbell, S. Yang, R. Albert, and K. Sheab. A network model for plantpollinator community assembly. Proceedings of the National Academy of Sciences, 108(1):197-202, 2011.
  9. A. Cangelosi and D. Parisi. Computer Simulation: A New Scientific Approach to the Study of Language Evolution. In A. Cangelosi and D. Parisi, editors, Simulating the Evolution of Language. Springer, 2001.
  10. C. Castellano, S. Fortunato, and V. Loreto. Statistical physics of social dynamics. Rev. Mod. Phys., 81(2):591-646, 2009.
  11. D. Centola and M. Macy. Complex Contagions and the Weakness of Long Ties. American J. Sociology, 113(3):702-734, 2007.
  12. E. Deelman, J. Blythe, Y. Gil, C. Kesselman, S. Koranda, A. Lazzarini, G. Mehta, M. A. Papa, and K. Vahi. Pegasus and the Pulsar Search: From Metadata to Execution on the Grid. In Applications Grid Workshop at the Fifth International Conference on Parallel Processing and Applied Mathematics (PPAM), pages 821-830, Czestochowa, Poland, 2003.
  13. R. Dunlap, L. Mark, S. Rugaber, V. Balaji, J. Chastang, L. Cinquini, C. DeLuca, D. Middleton, and S. Murphy. Earth system curator: metadata infrastructure for climate modeling. Earth Science Informatics, 1:131-149, 2008. 10.1007/s12145-008-0016-1.
  14. D. Easley and J. Kleinberg. Networks, Crowds and Markets: Reasoning About A Highly Connected World. Cambridge University Press, New York, NY, 2010.
  15. Faloutsos. Project Pegasus. http://www.cs.cmu.edu/ ∼ pegasus/, 2009. [Online; accessed 17-July-2012].
  16. M. A. Gonc ¸alves, E. A. Fox, L. T. Watson, and N. A. Kipp. Streams, structures, spaces, scenarios, societies (5s): A formal model for digital libraries. ACM Trans Inf Syst, 22(2):270-312, 2004.
  17. S. Gonzalez-Bailon, J. Borge-Holthoefer, A. Rivero, and Y. Moreno. The Dynamics of Protest Recruitment Through an Online Network. Nature Scientific Reports, pages 1-7, 2011. DOI: 10.1038/srep00197.
  18. M. Granovetter. Threshold Models of Collective Behavior. American J. Sociology, 83(6):1420-1443, 1978.
  19. A. A. Hagberg, D. A. Schult, and P. J. Swart. Exploring network structure, dynamics, and function using NetworkX. In Proceedings of the 7th Python in Science Conference (SciPy2008), pages 11-15, Pasadena, CA USA, Aug. 2008.
  20. B. Hancioglu, D. Swigon, and G. Clermont. A dynamical model of human immune response to influenza a virus infection. Journal of Theoretical Biology, 246(1):70-86, 2007.
  21. T. H. Jordan. SCEC 2009 Annual Report. Southern California Earthquake Center, 2009.
  22. U. Karaoz, T. Murali, S. Letovsky, Y. Zheng, C. Ding, C. Cantor, and S. Kasif. Whole-genome annotation by using evidence integration in functional-linkage networks. Proceedings of the National Academy of Sciences, 101(9):2888-2893, 2004.
  23. S. Kethers, X. Shen, A. E. Treloar, and R. G. Wilkinson. Discovering Australia's research data. In Proc. JCDL 2010, pages 345-348, 2010.
  24. C. Kuhlman, V. Kumar, M. Marathe, S. Ravi, D. Rosenkrantz, S. Swarup, and G. Tuli. Inhibiting the Diffusion of Contagions in Bi-Threshold Systems: Analytical and Experimental Results. In Proceedings of the AAAI Fall 2011 Symposium on Complex Adaptive Systems (CAS-AAAI 2011), pages 91-100, November 2011.
  25. J. Leidig, E. Fox, M. Marathe, and H. Mortveit. Epidemiology experiment and simulation management through schema-based digital libraries. In Proceedings of the 2nd DL.org Workshop at ECDL, pages 57-66, 2010.
  26. J. Leidig, E. A. Fox, K. Hall, M. Marathe, and H. Mortveit. SimDL: A Model Ontology Driven Digital Library for Simulation Systems. In ACM/IEEE Joint Conference on Digital Libraries, JCDL '11. ACM, 2011.
  27. P. P. Leonardo Candela, Donatella Castelli. D4Science: an e- infrastructure for supporting virtual research. In Proceedings of IRCDL 2009 -5th Italian Research Conference on Digital Libraries, pages 166- 169, 2009.
  28. J. Leskovec. Stanford Network Analysis Project. http://snap.stanford. edu/, 2009. [Online; accessed 17-July-2012].
  29. N. Li, L. Zhu, P. Mitra, K. Mueller, E. Poweleit, and C. L. Giles. oreChem ChemXSeer: a semantic digital library for chemistry. In Proc. JCDL 2010, pages 245-254, 2010.
  30. B. Lud?scher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E. A. Lee, J. Tao, and Y. Zhao. Scientific Workflow Management and the Kepler System. In Concurr. Comput. Pract. Exper, page 2006, 2005.
  31. S. Majithia, M. S. Shields, I. J. Taylor, and I. Wang. Triana: A Graphical Web Service Composition and Execution Toolkit. In Proceedings of the IEEE International Conference on Web Services (ICWS'04), pages 514- 524. IEEE Computer Society, 2004.
  32. R. W. Moore, A. Rajasekar, M. Wan, Y. Katsis, D. Zhou, A. Deutsch, and Y. Papakonstantinou. Constraint-based Knowledge Systems for Grids, Digital Libraries, and Persistent Archives: Yearly Report. In SDSC TR- 2005-5, 2005.
  33. D. J. Myers and P. E. Oliver. The opposing forces diffusion model: the initiation and repression of collective violence. Dynamics of Asymmetric Conflict, 1:164-189, 2008.
  34. T. Oinn, M. Greenwood, M. Addis, N. Alpdemir, J. Ferris, K. Glover, C. Goble, A. Goderis, D. Hull, D. Marvin, P. Li, P. Lord, M. Pocock, M. Senger, R. Stevens, A. Wipat, and C. Wroe. Taverna: lessons in creating a workflow environment for the life sciences. In Concurrency and Computation: Practice and Experience, volume 18, pages 1067- 1100, 2006.
  35. R. Puzis, M. Tubi, Y. Elovici, C. Glezer, and S. Dolev. A Decision Support System for Placement of Intrusion Detection and Prevention Devices in Large-Scale Networks. ACM Transactions on Modeling and Computer Simulation, 22:1-2, 2011.
  36. T. C. Reluga, J. Medlock, and A. S. Perelson. Backward bifurcations and multiple equilibria in epidemic models with structured immunity. Journal of Theoretical Biology, 252:155-165, 2008.
  37. T. Schelling. Micromotives and Macrobehavior. W. W. Norton and Company, 1978.
  38. N. Team. Network Workbench Tool. Indiana University, Northeastern University, and University of Michigan. http://nwb.cns.iu.edu, 2006. [Online; accessed 17-July-2012].
  39. J. Tsai, E. Bowring, S. Marsella, and M. Tambe. Empirical evaluation of computational emotional contagion models. In Proceedings of the 11th International Conference on Intelligent Virtual Agents (IVA 2011), 2011.
  40. T. W. Valente. Social Networks and Health: Models, Methods, and Applications. Oxford University Press, 2010.
  41. H. Vastani, N. Eriksson, R. Laubenbacher, A. Jarrah, B. Stigler, and F. Hinkelmann. Discrete Visualizer of Dynamics (DVD) v1.0. http://dvd. vbi.vt.edu/cgi-bin/git/dvd.pl, 2012. [Online; accessed 17-July-2012].
  42. J. Zhao, M.-Y. Kan, and Y. L. Theng. Math information retrieval: user requirements and prototype implementation. In Proceedings of JCDL '08, pages 187-196, 2008.