Academia.eduAcademia.edu

Outline

Topological Varma Superfluid in Optical Lattices

2016, Physical Review Letters

https://doi.org/10.1103/PHYSREVLETT.117.163001

Abstract

Topological states of matter are peculiar quantum phases showing different edge and bulk transport properties connected by the bulk-boundary correspondence. While non-interacting fermionic topological insulators are well established by now and have been classified according to a tenfold scheme, the possible realisation of topological states for bosons has not been much explored yet. Furthermore, the role of interactions is far from being understood. Here, we show that a topological state of matter exclusively driven by interactions may occur in the p-band of a Lieb optical lattice filled with ultracold bosons. The single-particle spectrum of the system displays a remarkable parabolic band-touching point, with both bands exhibiting non-negative curvature. Although the system is neither topological at the single-particle level, nor for the interacting ground state, on-site interactions induce an anomalous Hall effect for the excitations, carrying a non-zero Chern number. Our work introduces an experimentally realistic strategy for the formation of interaction-driven topological states of bosons.

References (54)

  1. C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005).
  2. K. von Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494 (1980).
  3. A. Altland and M. R. Zirnbauer, Phys. Rev. B 55, 1142 (1997).
  4. S. Ryu, A. P. Schnyder, A. Furusaki, and A. W. W. Ludwig, New Journal of Physics 12, 065010 (2010).
  5. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
  6. D. Xiao, M.-C. Chang, and Q. Niu, Rev. Mod. Phys. 82, 1959 (2010).
  7. S. Raghu, X.-L. Qi, C. Honerkamp, and S.-C. Zhang, Phys. Rev. Lett. 100, 156401 (2008).
  8. M. Daghofer and M. Hohenadler, Phys. Rev. B 89, 035103 (2014).
  9. J. Motruk, A. G. Grushin, F. de Juan, and F. Pollmann, Phys. Rev. B 92, 085147 (2015).
  10. K. Sun, H. Yao, E. Fradkin, and S. A. Kivelson, Phys. Rev. Lett. 103, 046811 (2009).
  11. E. McCann and V. I. Fal'ko, Phys. Rev. Lett. 96, 086805 (2006).
  12. K. Sun, W. V. Liu, A. Hemmerich, and S. Das Sarma, Nat. Phys. 8, 67 (2012).
  13. G. Giovannetti, M. Capone, J. van den Brink, and C. Or- tix, Phys. Rev. B 91, 121417 (2015).
  14. E. C. Marino, L. O. Nascimento, V. S. Alves, and C. Morais Smith, Phys. Rev. X 5, 011040 (2015).
  15. A. Dauphin, M. Müller, and M. A. Martin-Delgado, Phys. Rev. A 86, 053618 (2012).
  16. A. Dauphin, M. Müller, and M. A. Martin-Delgado, Phys. Rev. A 93, 043611 (2016).
  17. S. D. Huber and N. H. Lindner, Proceedings of the Na- tional Academy of Sciences 108, 19925 (2011).
  18. X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, Science 338, 1604 (2012).
  19. T. Senthil and M. Levin, Phys. Rev. Lett. 110, 046801 (2013).
  20. Z.-F. Xu, L. You, A. Hemmerich, and W. V. Liu, Phys. Rev. Lett. 117, 085301 (2016).
  21. W. Zhu, S. S. Gong, and D. N. Sheng, Phys. Rev. B 94, 035129 (2016).
  22. M. Atala, M. Aidelsburger, J. T. Barreiro, D. Abanin, T. Kitagawa, E. Demler, and I. Bloch, Nat. Phys. 9, 795 (2013).
  23. M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro, B. Paredes, and I. Bloch, Phys. Rev. Lett. 111, 185301 (2013).
  24. H. Miyake, G. A. Siviloglou, C. J. Kennedy, W. C. Bur- ton, and W. Ketterle, Phys. Rev. Lett. 111, 185302 (2013).
  25. G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, and T. Esslinger, Nature 515, 237 (2014).
  26. G. Engelhardt and T. Brandes, Phys. Rev. A 91, 053621 (2015).
  27. Y. Li, P. Sengupta, G. G. Batrouni, C. Miniatura, and B. Grémaud, Phys. Rev. A 92, 043605 (2015).
  28. I. Vasić, A. Petrescu, K. Le Hur, and W. Hofstetter, Phys. Rev. B 91, 094502 (2015).
  29. C. M. Varma, Phys. Rev. B 55, 14554 (1997).
  30. C. M. Varma, Phys. Rev. Lett. 83, 3538 (1999).
  31. C. M. Varma, Phys. Rev. B 73, 155113 (2006).
  32. Y. He, J. Moore, and C. M. Varma, Phys. Rev. B 85, 155106 (2012).
  33. S. Taie, H. Ozawa, T. Ichinose, T. Nishio, S. Nakajima, and Y. Takahashi, Science Advances 1, 10 (2015).
  34. G. Wirth, M. Ölschläger, and A. Hemmerich, Nat. Phys. 7, 147 (2011).
  35. M. Ölschläger, T. Kock, G. Wirth, A. Ewerbeck, C. Morais Smith, and A. Hemmerich, New J. Phys. 15, 083041 (2013).
  36. V. Elman and A. Hemmerich, Phys. Rev. A 72, 043410 (2005).
  37. I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885 (2008).
  38. W. V. Liu and C. Wu, Phys. Rev. A 74, 013607 (2006).
  39. Y.-Z. You, Z. Chen, X.-Q. Sun, and H. Zhai, Phys. Rev. Lett. 109, 265302 (2012).
  40. J. E. Avron and R. Seiler, Phys. Rev. Lett. 54, 259 (1985).
  41. "See supplemental material [url] for further informa- tion,".
  42. R. Shindou, R. Matsumoto, S. Murakami, and J.-i. Ohe, Phys. Rev. B 87, 174427 (2013).
  43. T. Fukui, Y. Hatsugai, and H. Suzuki, Journal of the Physical Society of Japan 74, 1674 (2005).
  44. A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems (Dover Publications, 2003).
  45. L. Fidkowski and A. Kitaev, Phys. Rev. B 81, 134509 (2010).
  46. V. Peano, M. Houde, C. Brendel, F. Marquardt, and A. A. Clerk, Nat. Comm. 7, 10779 (2016).
  47. L. J. LeBlanc, K. Jiménez-García, R. A. Williams, M. C. Beeler, A. R. Perry, W. D. Phillips, and I. B. Spielman, Proceedings of the National Academy of Sciences 109, 10811 (2012).
  48. H. M. Price and N. R. Cooper, Phys. Rev. Lett. 111, 220407 (2013).
  49. H. M. Price and N. R. Cooper, Phys. Rev. A 85, 033620 (2012).
  50. M. Aidelsburger, M. Lohse, C. Schweizer, M. Atala, J. T. Barreiro, S. Nascimbene, N. R. Cooper, I. Bloch, and N. Goldman, Nat. Phys. 11, 162 (2015).
  51. N. Fläschner, B. S. Rem, M. Tarnowski, D. Vogel, D. S. Lühmann, K. Sengstock, and C. Weitenberg, Science 352, 1091 (2016).
  52. P. T. Ernst, S. Gotze, J. S. Krauser, K. Pyka, D.-S. Luh- mann, D. Pfannkuche, and K. Sengstock, Nat. Phys. 6, 56 (2010).
  53. A. L. Gaunt, T. F. Schmidutz, I. Gotlibovych, R. P. Smith, and Z. Hadzibabic, Phys. Rev. Lett. 110, 200406 (2013).
  54. A. Petrescu and K. Le Hur, Phys. Rev. Lett. 111, 150601 (2013).