Topological Varma Superfluid in Optical Lattices
2016, Physical Review Letters
https://doi.org/10.1103/PHYSREVLETT.117.163001Abstract
Topological states of matter are peculiar quantum phases showing different edge and bulk transport properties connected by the bulk-boundary correspondence. While non-interacting fermionic topological insulators are well established by now and have been classified according to a tenfold scheme, the possible realisation of topological states for bosons has not been much explored yet. Furthermore, the role of interactions is far from being understood. Here, we show that a topological state of matter exclusively driven by interactions may occur in the p-band of a Lieb optical lattice filled with ultracold bosons. The single-particle spectrum of the system displays a remarkable parabolic band-touching point, with both bands exhibiting non-negative curvature. Although the system is neither topological at the single-particle level, nor for the interacting ground state, on-site interactions induce an anomalous Hall effect for the excitations, carrying a non-zero Chern number. Our work introduces an experimentally realistic strategy for the formation of interaction-driven topological states of bosons.
References (54)
- C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005).
- K. von Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494 (1980).
- A. Altland and M. R. Zirnbauer, Phys. Rev. B 55, 1142 (1997).
- S. Ryu, A. P. Schnyder, A. Furusaki, and A. W. W. Ludwig, New Journal of Physics 12, 065010 (2010).
- M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
- D. Xiao, M.-C. Chang, and Q. Niu, Rev. Mod. Phys. 82, 1959 (2010).
- S. Raghu, X.-L. Qi, C. Honerkamp, and S.-C. Zhang, Phys. Rev. Lett. 100, 156401 (2008).
- M. Daghofer and M. Hohenadler, Phys. Rev. B 89, 035103 (2014).
- J. Motruk, A. G. Grushin, F. de Juan, and F. Pollmann, Phys. Rev. B 92, 085147 (2015).
- K. Sun, H. Yao, E. Fradkin, and S. A. Kivelson, Phys. Rev. Lett. 103, 046811 (2009).
- E. McCann and V. I. Fal'ko, Phys. Rev. Lett. 96, 086805 (2006).
- K. Sun, W. V. Liu, A. Hemmerich, and S. Das Sarma, Nat. Phys. 8, 67 (2012).
- G. Giovannetti, M. Capone, J. van den Brink, and C. Or- tix, Phys. Rev. B 91, 121417 (2015).
- E. C. Marino, L. O. Nascimento, V. S. Alves, and C. Morais Smith, Phys. Rev. X 5, 011040 (2015).
- A. Dauphin, M. Müller, and M. A. Martin-Delgado, Phys. Rev. A 86, 053618 (2012).
- A. Dauphin, M. Müller, and M. A. Martin-Delgado, Phys. Rev. A 93, 043611 (2016).
- S. D. Huber and N. H. Lindner, Proceedings of the Na- tional Academy of Sciences 108, 19925 (2011).
- X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, Science 338, 1604 (2012).
- T. Senthil and M. Levin, Phys. Rev. Lett. 110, 046801 (2013).
- Z.-F. Xu, L. You, A. Hemmerich, and W. V. Liu, Phys. Rev. Lett. 117, 085301 (2016).
- W. Zhu, S. S. Gong, and D. N. Sheng, Phys. Rev. B 94, 035129 (2016).
- M. Atala, M. Aidelsburger, J. T. Barreiro, D. Abanin, T. Kitagawa, E. Demler, and I. Bloch, Nat. Phys. 9, 795 (2013).
- M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro, B. Paredes, and I. Bloch, Phys. Rev. Lett. 111, 185301 (2013).
- H. Miyake, G. A. Siviloglou, C. J. Kennedy, W. C. Bur- ton, and W. Ketterle, Phys. Rev. Lett. 111, 185302 (2013).
- G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, and T. Esslinger, Nature 515, 237 (2014).
- G. Engelhardt and T. Brandes, Phys. Rev. A 91, 053621 (2015).
- Y. Li, P. Sengupta, G. G. Batrouni, C. Miniatura, and B. Grémaud, Phys. Rev. A 92, 043605 (2015).
- I. Vasić, A. Petrescu, K. Le Hur, and W. Hofstetter, Phys. Rev. B 91, 094502 (2015).
- C. M. Varma, Phys. Rev. B 55, 14554 (1997).
- C. M. Varma, Phys. Rev. Lett. 83, 3538 (1999).
- C. M. Varma, Phys. Rev. B 73, 155113 (2006).
- Y. He, J. Moore, and C. M. Varma, Phys. Rev. B 85, 155106 (2012).
- S. Taie, H. Ozawa, T. Ichinose, T. Nishio, S. Nakajima, and Y. Takahashi, Science Advances 1, 10 (2015).
- G. Wirth, M. Ölschläger, and A. Hemmerich, Nat. Phys. 7, 147 (2011).
- M. Ölschläger, T. Kock, G. Wirth, A. Ewerbeck, C. Morais Smith, and A. Hemmerich, New J. Phys. 15, 083041 (2013).
- V. Elman and A. Hemmerich, Phys. Rev. A 72, 043410 (2005).
- I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885 (2008).
- W. V. Liu and C. Wu, Phys. Rev. A 74, 013607 (2006).
- Y.-Z. You, Z. Chen, X.-Q. Sun, and H. Zhai, Phys. Rev. Lett. 109, 265302 (2012).
- J. E. Avron and R. Seiler, Phys. Rev. Lett. 54, 259 (1985).
- "See supplemental material [url] for further informa- tion,".
- R. Shindou, R. Matsumoto, S. Murakami, and J.-i. Ohe, Phys. Rev. B 87, 174427 (2013).
- T. Fukui, Y. Hatsugai, and H. Suzuki, Journal of the Physical Society of Japan 74, 1674 (2005).
- A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems (Dover Publications, 2003).
- L. Fidkowski and A. Kitaev, Phys. Rev. B 81, 134509 (2010).
- V. Peano, M. Houde, C. Brendel, F. Marquardt, and A. A. Clerk, Nat. Comm. 7, 10779 (2016).
- L. J. LeBlanc, K. Jiménez-García, R. A. Williams, M. C. Beeler, A. R. Perry, W. D. Phillips, and I. B. Spielman, Proceedings of the National Academy of Sciences 109, 10811 (2012).
- H. M. Price and N. R. Cooper, Phys. Rev. Lett. 111, 220407 (2013).
- H. M. Price and N. R. Cooper, Phys. Rev. A 85, 033620 (2012).
- M. Aidelsburger, M. Lohse, C. Schweizer, M. Atala, J. T. Barreiro, S. Nascimbene, N. R. Cooper, I. Bloch, and N. Goldman, Nat. Phys. 11, 162 (2015).
- N. Fläschner, B. S. Rem, M. Tarnowski, D. Vogel, D. S. Lühmann, K. Sengstock, and C. Weitenberg, Science 352, 1091 (2016).
- P. T. Ernst, S. Gotze, J. S. Krauser, K. Pyka, D.-S. Luh- mann, D. Pfannkuche, and K. Sengstock, Nat. Phys. 6, 56 (2010).
- A. L. Gaunt, T. F. Schmidutz, I. Gotlibovych, R. P. Smith, and Z. Hadzibabic, Phys. Rev. Lett. 110, 200406 (2013).
- A. Petrescu and K. Le Hur, Phys. Rev. Lett. 111, 150601 (2013).