Academia.eduAcademia.edu

Outline

ODIN IVR-Interactive Solution for Emergency Calls Handling

Applied Sciences

https://doi.org/10.3390/APP122110844

Abstract

Human interaction in natural language with computer systems has been a prime focus of research, and the field of conversational agents (including chatbots and Interactive Voice Response (IVR) systems) has evolved significantly since 2009, with a major boost in 2016, especially for industrial solutions. Emergency systems are crucial elements of today’s societies that can benefit from the advantages of intelligent human–computer interaction systems. In this paper, we present two solutions for human-to-computer emergency systems with critical deadlines that use a multi-layer FreeSwitch IVR solution and the Botpress chatbot platform. We are the pioneers in Romania who designed and implemented such a solution, which was evaluated in terms of performance and resource management concerning Quality of Service (QoS). Additionally, we assessed our Proof of Concept (PoC) with real data as part of the system for real-time Romanian transcription of speech and recognition of emotional states with...

References (42)

  1. Dahiya, M. A tool of conversation: Chatbot. Int. J. Comput. Sci. Eng. 2017, 5, 158-161.
  2. Luo, B.; Lau, R.Y.; Li, C.; Si, Y.W. A critical review of state-of-the-art chatbot designs and applications. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2022, 12, e1434. [CrossRef]
  3. Cheong, J.; Tucker, J.A. Utility of interactive voice response self-monitoring in stabilizing initial change during natural recovery attempts among persons with alcohol use disorder. J. Subst. Abus. Treat. 2022, 140, 108831. [CrossRef] [PubMed]
  4. Tsoli, S.; Sutton, S.; Kassavou, A. Interactive voice response interventions targeting behaviour change: A systematic literature review with meta-analysis and meta-regression. BMJ Open 2018, 8, e018974. [CrossRef] [PubMed]
  5. Tan, R.Y.H.; Lee, C.S.; Pichika, M.R.; Cheng, S.F.; Lam, K.Y. PH Responsive Polyurethane for the Advancement of Biomedical and Drug Delivery. Polymers 2022, 14, 1672. [CrossRef]
  6. Adamopoulou, E.; Moussiades, L. An overview of chatbot technology. In Proceedings of the IFIP International Conference on Artificial Intelligence Applications and Innovations, Halkidiki, Greece, 5-7 June 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 373-383.
  7. Madsen, J.L.; Lauridsen, K.G.; Løfgren, B. In-hospital cardiac arrest call procedures and delays of the cardiac arrest team: A nationwide study. Resusc. Plus 2021, 5, 100087. [CrossRef]
  8. French, R.M. The Turing Test: The first 50 years. Trends Cogn. Sci. 2000, 4, 115-122. [CrossRef]
  9. Weizenbaum, J. ELIZA-a computer program for the study of natural language communication between man and machine. Commun. ACM 1966, 9, 36-45. [CrossRef]
  10. Marzavan, S.; Nastasescu, V. Displacement calculus of the functionally graded plates by finite element method. Alex. Eng. J. 2022, 61, 12075-12090. [CrossRef]
  11. Marzavan, S. EFG method in numerical analysis of foam materials. Mech. Time-Depend. Mater. 2022, 26, 409-429. [CrossRef]
  12. Colby, K.M.; Weber, S.; Hilf, F.D. Artificial paranoia. Artif. Intell. 1971, 2, 1-25. [CrossRef]
  13. Wallace, R.S. The anatomy of ALICE. In Parsing the Turing Test; Springer: Berlin/Heidelberg, Germany, 2009; pp. 181-210.
  14. Ramesh, K.; Ravishankaran, S.; Joshi, A.; Chandrasekaran, K. A survey of design techniques for conversational agents. In Proceedings of the International Conference on Information, Communication and Computing Technology, Singapore, 27-29 December 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 336-350.
  15. Marietto, M.d.G.B.; de Aguiar, R.V.; Barbosa, G.d.O.; Botelho, W.T.; Pimentel, E.; França, R.d.S.; da Silva, V.L. Artificial intelligence markup language: A brief tutorial. arXiv 2013, arXiv:1307.3091.
  16. Nuruzzaman, M.; Hussain, O.K. A survey on chatbot implementation in customer service industry through deep neural networks. In Proceedings of the 2018 IEEE 15th International Conference on e-Business Engineering (ICEBE), Xi'an, China, 12-14 October 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 54-61.
  17. Jung, S. Semantic vector learning for natural language understanding. Comput. Speech Lang. 2019, 56, 130-145. [CrossRef]
  18. Bocklisch, T.; Faulkner, J.; Pawlowski, N.; Nichol, A. Rasa: Open source language understanding and dialogue management. arXiv 2017, arXiv:1712.05181.
  19. Al-Sinani, A.H.; Al-Saidi, B.S. A Survey of Chatbot creation tools for non-coder. J. Stud. Res. 2019. [CrossRef]
  20. Nenciu, B.; Corlatescu, D.G.; Dascalu, M. RASA Conversational Agent in Romanian for Predefined Microworlds. In Proceedings of the International Conference on Human-Computer Interaction (RoCHI2020), Online, 22-23 October 2020; MatrixRom: Bucuresti, Romania, 2020.
  21. Bunk, T.; Varshneya, D.; Vlasov, V.; Nichol, A. Diet: Lightweight language understanding for dialogue systems. arXiv 2020, arXiv:2004.09936.
  22. Boroghina, G.; Corlatescu, D.G.; Dascalu, M. Conversational Agent in Romanian for Storing User Information in a Knowledge Graph. In Proceedings of the International Conference on Human-Computer Interaction (RoCHI2020), Online, 22-23 October 2020; MatrixRom: Bucuresti, Romania, 2020.
  23. Messina, A.; Pribadi, H.; Stichbury, J.; Bucci, M.; Klarman, S.; Urso, A. BioGrakn: A knowledge graph-based semantic database for biomedical sciences. In Proceedings of the Conference on Complex, Intelligent, and Software Intensive Systems, Torino, Italy, 10-12 July 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 299-309.
  24. Belda-Medina, J.; Calvo-Ferrer, J.R. Using Chatbots as AI Conversational Partners in Language Learning. Appl. Sci. 2022, 12, 8427. [CrossRef]
  25. Mageira, K.; Pittou, D.; Papasalouros, A.; Kotis, K.; Zangogianni, P.; Daradoumis, A. Educational AI Chatbots for Content and Language Integrated Learning. Appl. Sci. 2022, 12, 3239. [CrossRef]
  26. Zygadło, A.; Kozłowski, M.; Janicki, A. Text-Based emotion recognition in English and Polish for therapeutic chatbot. Appl. Sci. 2021, 11, 10146. [CrossRef]
  27. Biswas, M. Microsoft Bot Framework. In Beginning AI Bot Frameworks; Springer: Berlin/Heidelberg, Germany, 2018; pp. 25-66.
  28. Williams, J.D.; Kamal, E.; Ashour, M.; Amr, H.; Miller, J.; Zweig, G. Fast and easy language understanding for dialog systems with Microsoft Language Understanding Intelligent Service (LUIS). In Proceedings of the 16th Annual Meeting of the Special Interest Group on Discourse and Dialogue, Prague, Czech Republic, 2-4 September 2015; pp. 159-161.
  29. Tri, T.C.M. Creating Smart, Human-Like Chatbot for Businesses Using BotPress Platform. PhD Thesis, German University, Saitama, Germany, 2020. (In Vietnamese)
  30. Haldén, F.J.; Yao Håkansson, J. A Comparison between Chatbots for Handling Administrative Healthcare Tasks; KTH: Stockholm, Sweden, 2020.
  31. Theosaksomo, D.; Widyantoro, D.H. Conversational Recommender System Chatbot Based on Functional Requirement. In Proceedings of the 2019 IEEE 13th International Conference on Telecommunication Systems, Services, and Applications (TSSA), Bali, Indonesia, 3-4 October 2019; pp. 154-159.
  32. Malas, D.; Morton, A. Basic Telephony Sip End-to-End Performance Metrics; Technical Report; AT&T Labs: Atlanta, GA, USA, 2011.
  33. Klüwer, T. From chatbots to dialog systems. In Conversational Agents and Natural Language Interaction: Techniques and Effective Practices; IGI Global: Hershey, PA, USA, 2011; pp. 1-22.
  34. Eeuwen, M.v. Mobile Conversational Commerce: Messenger Chatbots as the Next Interface between Businesses and Consumers. Master's Thesis, University of Twente, Enschede, The Netherland, 2017.
  35. Ramos, R. Screw the Turing Test-Chatbots don't need to act human. Ventur. Retrieved March 2017, 13, 2017.
  36. Bostrom, N.; Yudkowsky, E. The ethics of artificial intelligence. In Artificial Intelligence Safety and Security; Chapman and Hall/CRC: Boca Raton, FL, USA, 2018; pp. 57-69.
  37. Morrissey, K.; Kirakowski, J. 'Realness' in chatbots: Establishing quantifiable criteria. In Proceedings of the International conference on human-computer interaction, Cape Town, South Africa, 2-6 September 2013; Springer: Berlin/Heidelberg, Germany, 2013; pp. 87-96.
  38. Kudashkina, K.; Pilarski, P.M.; Sutton, R.S. Document-editing assistants and model-based reinforcement learning as a path to conversational AI. arXiv 2020, arXiv:2008.12095.
  39. Minessale, A.; Schreiber, D. FreeSWITCH Cookbook; Packt Publishing Ltd.: Birmingham, UK, 2012.
  40. Zadeh, L.A. Fuzzy logic. Computer 1988, 21, 83-93. [CrossRef]
  41. Ierusalimschy, R. (Ed.) Programming in Lua; Lua.org: Rio de Janeiro, Brazil, 2006.
  42. Azrour, M.; Farhaoui, Y.; Guezzaz, A. Experimental validation of new SIP authentication protocol. In Proceedings of the Interna- tional Conference on Big Data and Networks Technologies, Harbin, China, 19-20 December 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1-11.