Abstract
Drug-induced nephrotoxicity is a major cause of kidney dysfunction with potentially fatal consequences. The poor prediction of clinical responses based on preclinical research hampers the development of new pharmaceuticals. This emphasises the need for new methods for earlier and more accurate diagnosis to avoid drug-induced kidney injuries. Computational predictions of drug-induced nephrotoxicity are an attractive approach to facilitate such an assessment and such models could serve as robust and reliable replacements for animal testing. To provide the chemical information for computational prediction, we used the convenient and common SMILES format. We examined several versions of so-called optimal SMILES-based descriptors. We obtained the highest statistical values, considering the specificity, sensitivity and accuracy of the prediction, by applying recently suggested atoms pairs proportions vectors and the index of ideality of correlation, which is a special statistical measure ...
References (30)
- Hoste, E.A.; Bagshaw, S.M.; Bellomo, R.; Cely, C.M.; Colman, R.; Cruz, D.N.; Edipidis, K.; Forni, L.G.; Gomersall, C.D.; Govil, D.; et al. Epidemiology of acute kidney injury in critically ill patients: The multinational AKI-EPI study. Intens. Care Med. 2015, 41, 1411-1423. [CrossRef]
- Mehta, R.L.; Pascual, M.T.; Soroko, S.; Savage, B.R.; Himmelfarb, J.; Ikizler, T.A.; Paganini, E.P.; Chertow, G.M. Spectrum of acute renal failure in the intensive care unit: The PICARD experience. Kidney Int. 2004, 66, 1613-1621. [CrossRef]
- Moffett, B.S.; Goldstein, S.L. Acute kidney injury and increasing nephrotoxic-medication exposure in noncritically-ill children. Clin. J. Am. Soc. Nephrol. 2011, 6, 856-863. [CrossRef]
- Coca, S.G.; Singanamala, S.; Parikh, C.R. Chronic kidney disease after acute kidney injury: A systematic review and meta-analysis. Kidney Int. 2012, 81, 442-448. [CrossRef] [PubMed]
- Al-Naimi, M.S.; Rasheed, H.A.; Hussien, N.R.; Al-Kuraishy, H.M.; Al-Gareeb, A.I. Nephrotoxicity: Role and significance of renal biomarkers in the early detection of acute renal injury. J. Adv. Pharm. Technol. Res. 2019, 10, 95-99. [CrossRef] [PubMed]
- Kwiatkowska, E.; Domanski, L.; Dziedziejko, V.; Kajdy, A.; Stefanska, K.; Kwiatkowski, S. The Mechanism of Drug Nephrotoxicity and the Methods for Preventing Kidney Damage. Int. J. Mol. Sci. 2021, 22, 6109. [CrossRef] [PubMed]
- Bajaj, P.; Chowdhury, S.K.; Yucha, R.; Kelly, E.J.; Xiao, G. Emerging Kidney Models to Investigate Metabolism, Transport, and Toxicity of Drugs and Xenobiotics. Drug Metab. Dispos. 2018, 46, 1692-1702. [CrossRef] [PubMed]
- Chang, S.Y.; Weber, E.J.; Sidorenko, V.S.; A.; Yeung, C.K.; Gao, C.; Mao, Q.; Shen, D.; Wang, J.; Rosenquist, T.A.; et al. Human liver-kidney model elucidates the mechanisms of aristolochic acid nephrotoxicity. JCI Insight 2017, 2, e95978. [CrossRef] [PubMed]
- Andersen, M.L.; Winter, L.M.F. Animal models in biological and biomedical research-experimental and ethical concerns. An. Acad. Bras. Cienc. 2019, 91 (Suppl. 1), e20170238. [CrossRef]
- Van Norman, G.A. Limitations of Animal Studies for Predicting Toxicity in Clinical Trials: Is it Time to Rethink Our Current Approach? JACC Basic Transl. Sci. 2019, 4, 845-854. [CrossRef]
- Jansen, K.; Pou Casellas, C.; Groenink, L.; Wever, K.E.; Masereeuw, R. Humans are animals, but are animals human enough? A systematic review and meta-analysis on interspecies differences in renal drug clearance. Drug Discov. Today 2020, 25, 706-717.
- Faria, J.; Ahmed, S.; Gerritsen, K.G.F.; Mihaila, S.M.; Masereeuw, R. Kidney-based in vitro models for drug-induced toxicity testing. Arch. Toxicol. 2019, 93, 3397-3418. [CrossRef] [PubMed]
- Hengstler, J.G.; Sjogren, A.K.; Zink, D.; Hornberg, J.J. In vitro prediction of organ toxicity: The challenges of scaling and secondary mechanisms of toxicity. Arch. Toxicol. 2020, 94, 353-356. [CrossRef] [PubMed]
- Irvine, A.R.; van Berlo, D.; Shekhani, R.; Masereeuw, R. A systematic review of in vitro models of drug-induced kidney injury. Curr. Opin. Toxicol. 2021, 27, 18-26. [CrossRef]
- Yucel, C.; Erdogan Yucel, E.; Arslan, F.D.; Ekmekci, S.; Kisa, E.; Ulker, V.; Ucar, M.; Ilbey, Y.O.; Celik, O.; Isbilen Basok, B.; et al. All-trans retinoic acid prevents cisplatin-induced nephrotoxicity in rats. Naunyn-Schmiedeb. Arch. Pharmacol. 2019, 392, 159-164. [CrossRef] [PubMed]
- Gu, L.; Lu, J.; Li, Q.; Huang, W.; Wu, N.; Yu, Q.; Lu, H.; Zhang, X. Synthesis, extracorporeal nephrotoxicity, and 3D-QSAR of andrographolide derivatives. Chem. Biol. Drug Des. 2021, 97, 592-606. [CrossRef]
- Kanan, T.; Kanan, D.; Erol, I.; Yazdi, S.; Stein, M.; Durdagi, S. Targeting the NF-κB/IκBα complex via fragment-based E- Pharmacophore virtual screening and binary QSAR models. J. Mol. Graph. Model. 2019, 86, 264-277. [CrossRef]
- Pizzo, F.; Gadaleta, D.; Lombardo, A.; Nicolotti, O.; Benfenati, E. Identification of structural alerts for liver and kidney toxicity using repeated dose toxicity data. Chem. Cent. J. 2015, 9, 62. [CrossRef]
- Shi, Y.; Hua, Y.; Wang, B.; Zhang, R.; Li, X. In Silico Prediction and Insights Into the Structural Basis of Drug Induced Nephrotoxicity. Front. Pharmacol. 2022, 12, 793332. [CrossRef]
- Rogers, C.C.; Johnson, S.R.; Mandelbrot, D.A.; Pavlakis, M.; Horwedel, T.; Karp, S.J.; Egbuna, O.; Rodrigue, J.R.; Chudzinski, R.E.; Goldfarb-Rumyantzev, A.S.; et al. Timing of sirolimus conversion influences recovery of renal function in liver transplant recipients. Clin. Transplant. 2009, 23, 887-896. [CrossRef]
- Tsakovska, I.; Diukendjieva, A.; Worth, A.P. In Silico Models for Predicting Acute Systemic Toxicity. In In Silico Methods for Predicting Drug Toxicity; Methods in Molecular Biology; Benfenati, E., Ed.; Springer Nature: New York, NY, USA, 2022; pp. 259-290. [CrossRef]
- Weininger, D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 1988, 28, 31-36. [CrossRef]
- Toropov, A.A.; Toropova, A.P.; Lombardo, A.; Roncaglioni, A.; Lavado, G.J.; Benfenati, E. The Monte Carlo method to build up models of the hydrolysis half-lives of organic compounds. SAR QSAR Environ. Res. 2021, 32, 463-471. [CrossRef] [PubMed]
- Toropova, A.P.; Toropov, A.A.; Benfenati, E. Semi-correlations as a tool to build up categorical (active/inactive) model of GABA A receptor modulator activity. Struct. Chem. 2019, 30, 853-861. [CrossRef]
- Toropov, A.A.; Toropova, A.P.; Benfenati, E. The index of ideality of correlation: QSAR model of acute toxicity for zebrafish (Danio rerio) embryo. Int. J. Environ. Res. 2019, 13, 387-394. [CrossRef]
- Lei, T.; Sun, H.; Kang, Y.; Zhu, F.; Liu, H.; Zhou, W.; Wang, Z.; Li, D.; Li, Y.; Hou, T. ADMET Evaluation in Drug Discovery. 18. Reliable Prediction of Chemical-Induced Urinary Tract Toxicity by Boosting Machine Learning Approaches. Mol. Farm. 2017, 14, 3935-3953. [CrossRef]
- Sun, Y.; Shi, S.; Li, Y.; Wang, Q. Development of quantitative structure-activity relationship models to predict potential nephrotoxic ingredients in traditional Chinese medicines. Food Chem. Toxicol. 2019, 128, 163-170. [CrossRef]
- Bassan, A.; Alves, V.M.; Amberg, A.; Anger, L.T.; Auerbach, S.; Beilke, L.; Bender, A.; Cronin, M.T.D.; Cross, K.P.; Hsieh, J.-H.; et al. In silico approaches in organ toxicity hazard assessment: Current status and future needs in predicting liver toxicity. Comput. Toxicol. 2021, 20, 100187. [CrossRef]
- Huang, H.-J.; Lee, Y.-H.; Chou, C.-L.; Zheng, C.-M.; Chiu, H.-W. Investigation of potential descriptors of chemical compounds on prevention of nephrotoxicity via QSAR approach. Comput. Struct. Biotechnol. J. 2022, 20, 1876-1884. [CrossRef]
- Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.