Regularized D-bar method for the inverse conductivity problem
2009, Inverse Problems & Imaging
https://doi.org/10.3934/IPI.2009.3.599Abstract
A strategy for regularizing the inversion procedure for the twodimensional D-bar reconstruction algorithm based on the global uniqueness proof of Nachman [Ann. Math. 143 (1996)] for the ill-posed inverse conductivity problem is presented. The strategy utilizes truncation of the boundary integral equation and the scattering transform. It is shown that this leads to a bound on the error in the scattering transform and a stable reconstruction of the conductivity; an explicit rate of convergence in appropriate Banach spaces is derived as well. Numerical results are also included, demonstrating the convergence of the reconstructed conductivity to the true conductivity as the noise level tends to zero. The results provide a link between two traditions of inverse problems research: theory of regularization and inversion methods based on complex geometrical optics. Also, the procedure is a novel regularized imaging method for electrical impedance tomography.
References (93)
- K. Astala and L. Päivärinta, Calderón's inverse conductivity problem in the plane, Ann. of Math., 163 (2006), 265-299.
- K. Astala, M. Lassas and L. Päivärinta, Calderón's inverse problem for anisotropic conduc- tivity in the plane, Comm. Partial Differential Equations, 30 (2005), 207-224.
- K. Astala, M. Lassas and L. Päivärinta, Limits of visibility and invisibility for Calderón's inverse problem in the plane, in preparation.
- J. A. Barceló, T. Barceló and A. Ruiz, Stability of the inverse conductivity problem in the plane for less regular conductivities, J. Differential Equations, 173 (2001), 231-270.
- T. Barceló, D. Faraco and A. Ruiz, Stability of Calderón inverse conductivity problem in the plane, J. Math. Pures Appl., 88 (2007), 522-556.
- R. Beals and R. Coifman, "Scattering, Spectral Transformations and Nonlinear Evolution Equations. II," Goulaouic-Meyer-Schwartz Seminar, 1981/1982, Exp. No. XXI, 1982.
- R. Beals and R. Coifman, Multidimensional inverse scatterings and nonlinear partial dif- ferential equations, in "Pseudodifferential Operators and Applications" (Notre Dame, Ind., 1984), 45-70, Proc. Sympos. Pure Math., 43, Amer. Math. Soc., Providence, RI, 1985.
- J. Bikowski, "Electrical Impedance Tomography Reconstructions in Two and Three Dimen- sions; from Calderón to Direct Methods," Ph.D. thesis, Colorado State University, Fort Collins, CO, (2009).
- N. Bissantz, T. Hohage and A. Munk, Consistency and rates of convergence of nonlinear Tikhonov regularization with random noise, Inverse Problems, 20 (2004), 1773-1791.
- L. Borcea, Electrical impedance tomography, Inverse Problems, 18 (2002), 99-136.
- R. Brown, Global uniqueness in the impedance-imaging problem for less regular conductivities, SIAM J. Math. Anal., 27 (1996), 1049-1056.
- B. H. Brown and A. D. Seagar, Applied potential tomography: possible clinical applications, Clin. Phys. Physiol. Meas., 6 (1985), 109-121.
- R. Brown and R. Torres, Uniqueness in the inverse conductivity problem for conductivities with 3/2 derivatives in L p , p > 2n, J. Fourier Analysis Appl., 9 (2003), 1049-1056.
- R. M. Brown and G. Uhlmann, Uniqueness in the inverse conductivity problem for nonsmooth conductivities in two dimensions, Comm. Partial Differential Equations, 22 (1997), 1009- 1027.
- M. Brühl and M. Hanke, Numerical implementation of two non-iterative methods for locating inclusions by impedance tomography, Inverse Problems, 16 (2000), 1029-1042.
- A. Bukhgeim, Recovering the potential from Cauchy data in two dimensions, J. Inverse Ill- Posed Probl., 16 (2008), 19-34.
- A. P. Calderón, On an inverse boundary value problem, In "Seminar on Numerical Analysis and its Applications to Continuum Physics," Soc. Brasileira de Matemàtica, (1980), 65-73.
- M. Cheney, D. Isaacson and J. C. Newell, Electrical impedance tomography, SIAM Rev., 41 (1999), 85-101.
- H. Cornean, K. Knudsen and S. Siltanen, Towards a D-bar reconstruction method for three- dimensional eit, J. Inverse Ill-posed Probl., 14 (2006), 111-134.
- D. Dos Santos Ferreira, C. Kenig, J. Sjöstrand and G. Uhlmann, Determining the magnetic Schrödinger operator from partial Cauchy data, Comm. Math. Phys., 271 (2007), 467-488.
- D. Freimark, M. Arad, R. Sokolover, S. Zlochiver and S. Abboud, Monitoring lung fluid content in CHF patients under intravenous diuretics treatment using bio-impedance mea- surements, Physiol. Meas., 28 (2007), S269-S277.
- H. Engl, M. Hanke and A. Neubauer, "Regularization of Inverse Problems," Kluwer, 1996.
- L. Faddeev, The inverse problem in the quantum theory of scattering. II. (Russian), Current Problems in Mathematics, 3 (1974), 93-180.
- I. Frerichs, J. Hinz, P. Herrmann, G. Weisser, G. Hahn, T. Dudykevych, M. Quintel and G. Hellige, Detection of local lung air content by electrical impedance tomography compared with electron beam CT, J. Appl. Physiol., 93 (2002), 660-666.
- I. Frerichs, J. Hinz, P. Herrmann, G. Weisser, G. Hahn, M. Quintel and G. Hellige, Regional lung perfusion as determined by electrical impedance tomography in comparison with electron beam CT imaging, IEEE Trans. Med. Imaging, 21 (2002), 646-652.
- I. Frerichs, G. Schmitz, S. Pulletz, D. Schädler, G. Zick, J. Scholz and N. Weiler, Reproducibil- ity of regional lung ventilation distribution determined by electrical impedance tomography during mechanical ventilation, Physiol. Meas., 28 (207), 261-267.
- A. Greenleaf, Y. Kurylev, M. Lassas and G. Uhlmann, Full-wave invisibility of active devices at all frequencies, Comm. Math. Phys., 275 (2007), 749-789.
- A. Greenleaf, Y. Kurylev, M. Lassas and G. Uhlmann, Cloaking devices, electromagnetic wormholes and transformation optics, SIAM Rev., 51 (2009), 3-33.
- A. Greenleaf, M. Lassas and G. Uhlmann, The Calderón problem for conormal potentials, I: Global uniqueness and reconstruction, Comm. Pure Appl. Math, 56 (2003), 328-352.
- A. Greenleaf, M. Lassas and G. Uhlmann, Anisotropic conductivities that cannot detected in EIT, Physiol. Meas., 24 (2003), 413-420.
- A. Greenleaf, M. Lassas and G. Uhlmann, On nonuniqueness for Calderón's inverse problem, Math. Res. Lett., 10 (2003), 685-693.
- A. Greenleaf, M. Lassas and G. Uhlmann, Invisibility and inverse problems, Bull. Amer. Math. Soc., 46 (2009), 55-97.
- M. Hanke, Regularizing properties of a truncated Newton-CG algorithm for nonlinear inverse problems, Numer. Funct. Anal. Optim., 18 (1997), 971-93.
- B. Hofmann, B. Kaltenbacher, C. Pöschl and O. Scherzer, A convergence rates result for Tikhonov regularization in Banach spaces with non-smooth operators, Inverse Problems, 23 (2007), 987-1010.
- T. Hohage and M. Pricop, Nonlinear Tikhonov regularization in Hilbert scales for inverse boundary value problems with random noise, Inverse Probl. Imaging, 2 (2008), 271-290.
- N. Hyvönen, Complete electrode model of electrical impedance tomography: approximation properties and characterization of inclusions, SIAM J. Appl. Math., 64 (2004), 902-931.
- T. Ide, H. Isozaki, S. Nakata, S. Siltanen and G. Uhlmann, Probing for electrical inclusions with complex spherical waves, Comm. Pure Appl. Math., 60 (2007), 1415-1442.
- M. Ikehata and S. Siltanen, Numerical method for finding the convex hull of an inclusion in conductivity from boundary measurements, Inverse Problems, 16 (2000), 1043-1052.
- M. Ikehata and S. Siltanen, Electrical impedance tomography and Mittag-Leffler's function, Inverse Problems, 20 (2004), 1325-1348.
- M. Ikehata and S. Siltanen, Numerical solution of the Cauchy problem for the stationary Schrödinger equation using Faddeev's Green function, SIAM J. Appl. Math., 64 (2004), 1907-1932.
- D. Isaacson, J. L. Mueller, J. C. Newell and S. Siltanen, Reconstructions of chest phantoms by the D-bar method for electrical impedance tomography, IEEE Trans. Med. Im., 23 (2004), 821-828.
- D. Isaacson, J. L. Mueller, J. C. Newell and S. Siltanen, Imaging cardiac activity by the D-bar method for electrical impedance tomography, Physiol. Meas., 27 (2006), S43-S50.
- L. Justen and R. Ramlau, A non-iterative regularization approach to blind deconvolution, Inverse Problems, 22 (2006), 771-800.
- B. Kaltenbacher, A. Neubauer and O. Schertzer, "Iterative Regularization Methods for Non- linear Ill-posed Problems," Walter de Gruyter & Co, 2008.
- B. Kaltenbacher and A. Neubauer, Convergence of projected iterative regularization methods for nonlinear problems with smooth solutions, Inverse Problems, 22 (2006), 1105-1119.
- T. Kato, "Perturbation Theory for Linear Operators," Springer, 1966.
- C. E. Kenig, J. Sjöstrand and G. Uhlmann, The Calderón problem with partial data, Ann. of Math., 165 (2007), 567-591.
- S. Kindermann and A. Neubauer, On optimal convergence rates for Tikhonov regularization in L p spaces, submitted, 2008.
- A. Kirsch, "An Introduction to the Mathematical Theory of Inverse Problems," Springer, 1996.
- K. Knudsen, "On the Inverse Conductivity Problem," Ph.D. thesis, Department of Mathe- matical Sciences, Aalborg University, Denmark, 2002.
- K. Knudsen, A new direct method for reconstructing isotropic conductivities in the plane, Physiol. Meas., 24 (2003), 391-401.
- K. Knudsen, M. Lassas, J. L. Mueller and S. Siltanen, "Reconstructions of Piecewise Constant Conductivities by the D-bar Method for Electrical Impedance Tomography," Proceedings of Applied Inverse Problems, 2007, Vancouver, Journal of Physics: Conference Series, 124.
- K. Knudsen, M. Lassas, J. L. Mueller and S. Siltanen, D-bar method for electrical impedance tomography with discontinuous conductivities, SIAM J. Appl. Math., 67 (2007), 893-913.
- K. Knudsen, J. L. Mueller and S. Siltanen, Numerical solution method for the dbar-equation in the plane, J. Comp. Phys., 198 (2004), 500-517.
- K. Knudsen and M. Salo, Determining nonsmooth first order terms from partial boundary measurements, Inverse Probl. Imaging, 1 (2007), 349-369.
- K. Knudsen and A. Tamasan, Reconstruction of less regular conductivities in the plane, Comm. Partial Differential Equations, 29 (2004), 361-381.
- R. Kohn, H. Shen, M. Vogelius and M. Weinstein, Cloaking via change of variables in electrical impedance tomography, Inverse Problems, 24 (2008), 015016.
- P. W. Kunst, S. H. Böhm, G. Vazquez de Anda, M. B. Amato, B. Lachmann, P. E. Postmus and P. M. de Vries, Regional pressure volume curves by electrical impedance tomography in a model of acute lung injury, Crit. Care Med., 28 (2000), 178-183.
- P. W. Kunst, G. Vazquez de Anda, S. H. Bohm, T. J. Faes, B. Lachmann, P. E. Postmus and P. M. de Vries, Monitoring of recruitment and derecruitment by electrical impedance tomography in a model of acute lung injury, Crit. Care Med., 28 (2000), 3891-3895.
- P. W. Kunst, A. Vonk Noordegraaf, E. Raaijmakers, J. Bakker, A. B. Groeneveld, P. E. Post- mus and P. M. de Vries, Electrical impedance tomography in the assessment of extravascular lung water in noncardiogenic acute respiratory failure, Chest, 116 (1999), 1695-1702.
- M. Lassas, M. Taylor and G. Uhlmann, The Dirichlet-to-Neumann map for complete Rie- mannian manifolds with boundary, Comm. Geom. Anal., 11 (2003), 207-222.
- A. Lechleiter, A regularization technique for the factorization method, Inverse Problems, 22 (2006), 1605-1625.
- A. Lechleiter and A. Rieder, Newton regularizations for impedance tomography: Convergence by local injectivity, Inverse Problems, 24 (2008), 1-18.
- L. Liu, "Stability Estimates for the Two-Dimensional Inverse Conductivity Problem," Ph.D. thesis, University of Rochester, 1997.
- S. Lu, S. V. Pereverzev and R. Ramlau, An analysis of Tikhonov regularization for nonlinear ill-posed problems under a general smoothness assumption, Inverse Problems, 23 (2007), 217- 230.
- P. Mathé and B. Hofmann, How general are general source conditions? Inverse Problems, 24 (2008).
- J. L. Mueller and S. Siltanen, Direct reconstructions of conductivities from boundary mea- surements, SIAM J. Sci. Comp., 24 (2003), 1232-1266.
- J. L. Mueller, S. Siltanen and D. Isaacson, A direct reconstruction algorithm for electrical impedance tomography, IEEE Trans. Med. Im., 21 (2002), 555-559.
- E. Murphy, J. L. Mueller and J. C. Newell, Reconstruction of conductive and insulating targets using the D-bar method on an elliptical domain, Physiol. Meas., 28 (2007), S101-S114.
- A. I. Nachman, Reconstructions from boundary measurements, Ann. of Math., 128 (1988), 531-576.
- A. I. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem, Ann. of Math., 143 (1996), 71-96.
- A. I. Nachman, "Global Uniqueness for a Two-Dimensional Inverse Boundary Value Problem," University of Rochester, Dept. of Mathematics Preprint Series, 19, 1993.
- J. C. Newell, R. S. Blue, D. Isaacson, G. J. Saulnier and A. S. Ross, Phasic three-dimensional impedance imaging of cardiac activity, Physiol. Meas., 23 (2002), 203-209.
- R. G. Novikov, A multidimensional inverse spectral problem for the equation -∆ψ + (v(x) - Eu(
- ψ = 0, Funktsional. Anal. i Prilozhen., 22 11-22 (transl.) Funct. Anal. Appl., 22 (1988), 263-272.
- L. Päivärinta, A. Panchenko and G. Uhlmann, Complex geometrical optics for Lipschitz conductivities, Rev. Mat. Iberoam., 19 (2003), 57-72.
- R. Ramlau, Regularization properties of Tikhonov regularization with sparsity constraints, Electron. Trans. Numer. Anal., 30 (2008), 54-74.
- R. Ramlau and G. Teschke, A Tikhonov-based projection iteration for nonlinear ill-posed problems with sparsity constraints, Numer. Math., 104 (2006), 177-203.
- E. Resmerita, Regularization of ill-posed problems in Banach spaces: convergence rates, In- verse Problems, 21 (2005), 1303-1314.
- L. Rondi, On the regularization of the inverse conductivity problem with discontinuous con- ductivities, Inverse Probl. and Imaging, 2 (2008), 397-409.
- M. Salo, Semiclassical pseudodifferential calculus and the reconstruction of a magnetic field, Comm. Partial Differential Equations, 31 (2006), 1639-1666.
- S. Siltanen, "Electrical Impedance Tomography and Faddeev Green's Functions," Ann. Acad. Sci. Fenn. Mathematica Dissertationes, 121, 1999.
- S. Siltanen, J. Mueller and D. Isaacson, An implementation of the reconstruction algorithm of A. Nachman for the 2-D inverse conductivity problem, Inverse Problems, 16 (2000), 681-699; ( Erratum: Inverse problems, 17, 1561-1563)
- S. Siltanen, J. Mueller and D. Isaacson, Reconstruction of high contrast 2-D conductivities by the algorithm of A. Nachman, in "AMS Proceedings of the 2000 Conference on Radon Transforms and Tomography," Contemporary Mathematics 278, (2001), E. Quinto, editor, 241-254.
- H. Smit, A. Vonk Noordegraaf, J. T. Marcus, A. Boonstra, P. M. de Vries and P. E. Postmus, Determinants of pulmonary perfusion measured by electrical impedance tomography, Eur. J. Appl. Physiol., 92 (2004), 45-49.
- Z. Sun and G. Uhlmann, Anisotropic inverse problems in two dimensions, Inverse Problems, 19 (2003), 1001-1010.
- J. Sylvester, An anisotropic inverse boundary value problem, Comm. Pure Appl. Math., 43 (1990), 201-232.
- J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. of Math., 125 (1987), 153-169.
- G. Uhlmann and J-N. Wang, Reconstructing discontinuities using complex geometrical optics solutions, SIAM J. Appl. Math., 68 (2008), 1026-1044.
- I. N. Vekua, "Generalized Analytic Functions," Pergamon Press, (1962).
- J. A. Victorino, J. B. Borges, V. N. Okamoto, G. F. J. Matos, M. R. Tucci, M. P. R. Caramez, H. Tanaka, D. C. B. Santos, C. S. V. Barbas, C. R. R. Carvalho and M. B. P. Amato, Imbal- ances in Regional Lung ventilation: A validation study on electrical impedance tomography, Am. J. Respir. Crit. Care Med., 169 (2004), 791-800.
- K. Yosida, "Functional Analysis," Springer, 1965
- S. Zlochiver, M. M. Radai, D. Barak-Shinar, H. Krief, T. Ben-Gal, V. Yaari, R. Ben-Yehuda, B. Strasberg and S. Abboud, An eit system for monitoring lung conductivity in CHF patients, www.cardio-inspect.com/EIT System.pdf.