Structure Formation independent of Cold Dark Matter
2008, arXiv (Cornell University)
Abstract
It is shown that a first-order cosmological perturbation theory for Friedmann-Lemaître-Robertson-Walker universes admits one and only one gauge-invariant variable which describes the perturbation to the energy density and which becomes equal to the usual energy density of the Newtonian theory of gravity in the limit that all particle velocities are negligible with respect to the speed of light. The same holds true for the perturbation to the particle number density. A cosmological perturbation theory based on these particular gauge-invariant quantities is more precise than any earlier first-order perturbation theory. In particular, it explains star formation in a satisfactory way, even in the absence of cold dark matter. In a baryon-only universe, the earliest stars, the so-called Population III stars, are found to have masses between 400 and 100,000 solar masses with a peak around 3400 solar masses. If cold dark matter, with particle mass 10 times heavier than the proton mass, is present then the star masses are between 16 and 4000 solar masses with a peak around 140 solar masses. They come into existence between 100 Myr and 1000 Myr. At much later times, star formation is possible only in high density regions, for example within galaxies. Late time stars may have much smaller masses than early stars. The smallest stars that can be formed have masses of 0.2-0.8 solar mass, depending on the initial internal relative pressure perturbation. It is demonstrated that the Newtonian theory of gravity cannot be used to study the evolution of cosmological density perturbations.
References (46)
- Carlos S. Frenk. Simulating the Formation of Cosmic Structure. Phil. Trans. Roy. Soc. Lond., 300:1277, 2002. URL http://arxiv.org/abs/astro-ph/0208219.
- Volker Springel, Carlos S. Frenk, and Simon D. M. White. The large-scale structure of the universe. Nature, 440:1137, 2006. URL http://arxiv.org/abs/astro-ph/0604561.
- A. Loeb. Let there be Light: the Emergence of Structure out of the Dark Ages in the Early Universe, 2008. URL http://arxiv.org/abs/0804.2258.
- Thomas H. Greif, Jarrett L. Johnson, Ralf S. Klessen, and Volker Bromm. The First Galaxies: Assembly, Cooling and the Onset of Turbulence, 2008. URL http://arxiv.org/abs/0803.2237.
- T. M. Nieuwenhuizen, C. H. Gibson, and R. E. Schild. Gravitational Hydrodynamics of Large Scale Structure Formation. ArXiv e-prints, jun 2009. URL http://arXiv.org/abs/0906.5087.
- E. M. Lifshitz and I. M. Khalatnikov. Investigations in Relativistic Cosmology. Adv. Phys., 12:185-249, 1963.
- P. J. Adams and V. Canuto. Exact Solution of the Lifshitz Equations Governing the Growth of Fluctuations in Cosmology. Physical Review D, 12(12):3793-3799, 1975.
- D. W. Olson. Density Perturbations in Cosmological Models. Physical Review D, 14(2):327-331, 1976.
- P. J. E. Peebles. The Large-Scale Structure of the Universe. Princeton Series in Physics. Princeton University Press, New Jersey, 1980. ISBN 978-0691082400.
- E. W. Kolb and M. S. Turner. The Early Universe. Frontiers in Physics. Westview Press, 1994. ISBN 978-0201626742.
- W. H. Press and E. T. Vishniac. Tenacious Myths about Cosmological Perturbations larger than the Horizon Size. The Astrophysical Journal, 239:1-11, July 1980.
- J. M. Bardeen. Gauge-invariant Cosmological Perturbations. Phys. Rev., D22:1882-1905, 1980.
- V. F. Mukhanov and H. A. Feldman and R. H. Brandenberger. Theory of Cosmological Perturbations. Phys. Rep., 215(5 & 6):203-333, 1992.
- J. Dunkley, E. Komatsu, M. R. Nolta, D. N. Spergel, D. Larson, G. Hinshaw, L. Page, C. L. Bennett, B. Gold, N. Jarosik, J. L. Weiland, M. Halpern, R. S. Hill, A. Kogut, M. Limon, S. S. Meyer, G. S. Tucker, E. Wollack, and E. L. Wright. Five- Year Wilkinson Microwave Anisotropy Probe Observations: Likelihoods and Parameters from the WMAP Data. ApJS, 180:306-329, February 2009. doi:10.1088/0067-0049/180/2/306. URL http://arXiv.org/abs/0803.0586.
- D. N. Spergel et al. First year Wilkinson Microwave Anisotropy Probe (wmap) Observations: Determination of Cosmo- logical Parameters. Astrophys. J. Suppl., 148:175, 2003. URL http://arxiv.org/abs/astro-ph/0302209.
- E. Komatsu et al. Five-year Wilkinson Microwave Anisotropy Probe (wmap) Observations: Cosmological Interpretation, 2008. URL http://arxiv.org/abs/0803.0547.
- G. Hinshaw, J. L. Weiland, R. S. Hill, N. Odegard, D. Larson, C. L. Bennett, J. Dunkley, B. Gold, M. R. Greason, N. Jarosik, E. Komatsu, M. R. Nolta, L. Page, D. N. Spergel, E. Wollack, M. Halpern, A. Kogut, M. Limon, S. S. Meyer, G. S. Tucker, and E. L. Wright. Five-Year Wilkinson Microwave Anisotropy Probe (wmap) Observations: Data Processing, Sky Maps, and Basic Results, 2008. URL http://arXiv.org/abs/0803.0732.
- E. Komatsu, K. M. Smith, J. Dunkley, C. L. Bennett, B. Gold, G. Hinshaw, N. Jarosik, D. Larson, M. R. Nolta, L. Page, D. N. Spergel, M. Halpern, R. S. Hill, A. Kogut, M. Limon, S. S. Meyer, N. Odegard, G. S. Tucker, J. L. Weiland, E. Wollack, and E. L. Wright. Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation. ArXiv e-prints, January 2010. URL http://arXiv.org/abs/1001.4538.
- Jarrett L. Johnson. Population III Star Clusters in the Reionized Universe, 2009. URL http://arXiv.org/abs/0911.1294.
- S. C. O. Glover, P. C. Clark, T. H. Greif, J. L. Johnson, V. Bromm, R. S. Klessen, and A. Stacy. Open Questions in the Study of Population III Star Formation, 2008. URL http://arXiv.org/abs/0808.0608.
- Michael L. Norman. Population III Star Formation and IMF, 2008. URL http://arXiv.org/abs/0801.4924.
- E. M. Lifshitz. On the Gravitational Stability of the Expanding Universe. J. Phys., X(2):116-129, 1946.
- L. D. Landau and E. M. Lifshitz. The Classical Theory of Fields, volume 2 of Course of Theoretical Physics. Pergamon Press, Oxford, 4 edition, 1980. ISBN 978-0750627689.
- S. W. Hawking. Perturbations of an Expanding Universe. Astrophysical Journal, 145(2):544-554, 1966.
- H. Kodama and M. Sasaki. Cosmological Perturbation Theory. Progress of Theoretical Physics Supplement, (78):1-166, 1984.
- G. F. R. Ellis and M. Bruni. Covariant and Gauge-invariant Approach to Cosmological Density Fluctuations. Phys. Rev. D, 40(6):1804-1818, 1989.
- G. F. R. Ellis, J. Hwang, and M. Bruni. Covariant and Gauge-independent Perfect-Fluid Robertson-Walker Perturbations. Phys. Rev. D, 40(6):1819-1826, 1989.
- George F. R. Ellis and Henk van Elst. Cosmological Models (Cargèse lectures 1998), 1998. URL http://arxiv.org/abs/ gr-qc/9812046.
- V. Mukhanov. Physical Foundations of Cosmology. Cambridge University Press, 2005. ISBN 978-0521563987.
- E. Bertschinger. Cosmological dynamics. In M. Spiro R. Schaeffer, J. Silk and J. Zinn-Justin, editors, Cosmologie et Structure à Grande Échelle, pages 273-374. Elsevier Science, 1996. Les Houches, Session LX, 1993.
- Karim A. Malik and David Wands. Cosmological Perturbations, 2009. URL http://arXiv.org/abs/0809.4944.
- J. Hwang and H. Noh. Newtonian Limits of the Relativistic Cosmological Perturbations, 1997. URL http://arXiv.org/ abs/astro-ph/9701137.
- J. Hwang and H. Noh. Why Newton's Gravity is practically reliable in the large-scale Cosmological Simulations, 2005. URL http://arXiv.org/abs/astro-ph/0507159.
- H. Noh and J. Hwang. Relativistic-Newtonian Correspondence of the Zero-pressure but weakly nonlinear Cosmology. Class. Quant. Grav., 22:3181-3188, 2005. URL http://arxiv.org/abs/gr-qc/0412127.
- S. Weinberg. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. John Wiley & Sons, Inc. New York, 1972. ISBN 978-0471925675.
- J. W. York, jr. Covariant Decomposition of symmetric Tensors in the Theory of Gravitation. Annales de l' Institut Henry Poincaré -Section A: Physique théorique, XXI(4):319-332, 1974.
- J. M. Stewart. Perturbations of Friedmann-Robertson-Walker Cosmological Models. Class. Quantum Grav., 7:1169-1180, 1990.
- The CDMS Collaboration and Z. Ahmed. Results from the Final Exposure of the CDMS II Experiment, 2009. URL http://arXiv.org/abs/0912.3592.
- T. Padmanabhan. Structure Formation in the Universe. Cambridge University Press, 1993. ISBN 978-0521424868.
- T. M. Nieuwenhuizen. Do Non-Relativistic Neutrinos constitute the Dark Matter? Europhysics Letters, 86:59001, June 2009. doi:10.1209/0295-5075/86/59001. URL http://arXiv.org/abs/0812.4552.
- R Development Core Team. R: A Language and Environment for Statistical Computing, 2010. URL http://www. R-project.org.
- J. A. S. Lima, V. Zanchin, and R. Brandenberger. On the Newtonian Cosmology Equations with Pressure. Mon. Not. Roy. Astron. Soc., 291:L1, 1997. URL http://arXiv.org/abs/astro-ph/9612166.
- James B. Dent and Sourish Dutta. On the Dangers of using the Growth Equation on Large Scales, 2008. URL http: //arXiv.org/abs/0808.2689.
- J. A. Peacock. Cosmological Physics. Cambridge University Press, 1999. ISBN 0-521-42270-1.
- B. W. Char et al. Maple V, Library Reference Manual. Springer-Verlag, Berlin, Heidelberg, New York, 1992. ISBN 3-540-97592-6.
- P. G. Miedema and W. A. van Leeuwen. Density Perturbations in the Early Universe. 2003. URL http://arXiv.org/ abs/gr-qc/0303004.