Academia.eduAcademia.edu

Outline

Thick vortices in SU(2) lattice gauge theory

2004

Abstract

Three dimensional SU (2) lattice gauge theory is studied after eliminating thin monopoles and the smallest thick monopoles. Kinematically this constraint allows the formation of thick vortex loops which produce Z(2) fluctuations at longer length scales. The thick vortex loops are identified in a three dimensional simulation. A condensate of thick vortices persists even after the thin vortices have all disappeared. The thick vortices decouple at a slightly lower temperature (higher β) than the thin vortices and drive a phase transition.

References (17)

  1. Nucl. Phys. B (Proc. Suppl.) 106 (2002);
  2. Nucl. Phys. B (Proc. Suppl.) 119 (2003);
  3. Nucl. Phys. B (Proc. Suppl.) 129/130 (2004).
  4. G. Mack and V. B. Petkova, Ann. of Physics 123 (1979) 442, 125 (1980) 117; E. Tomboulis, Phys. Rev. D23 (1981) 2371.
  5. G. Mack, Phys. Rev. Lett. 45 (1980) 1578.
  6. T. G. Kovacs and E. T. Tomboulis, Phys. Rev. Lett. 85 (2000) 704.
  7. T. G. Kovacs and E. Tomboulis, Phys. Rev. D57 (1988) 4054.
  8. L. Del Debbio, M. Faber, J. Greensite, and S. Olejenik, Phys. Rev. D 55 (1997) 2298.
  9. M. Faber, J. Greensite, and S. Olejenik, JHEP 9901:008,1999; JHEP 9912:012,1999;hep-lat/9911006; hep-lat/9912002.
  10. K. Langfeld and H. Reinhardt, Phys. Rev. D 55, 7993 (1997);
  11. K. Langfeld, H. Reinhardt, and O. Ten- nert, Phys. Lett. 419 (1998) 317;
  12. M. Engelhardt, K. Langfeld, H. Reinhardt, and O. Tennert, Phys. Lett. 431 (1998) 141; 452 (1999) 301; Phys. Rev. D 61 (2000) 054504.
  13. P. de Forcrand and M. D'Elia, hep-lat/9907028;hep-lat/9909005.
  14. A. Alexandru and R. W. Haymaker, hep-lat/0002031.
  15. A. Hart, B. Lucini, Z. Schram, and M. Teper, hep-lat/0005010;
  16. C. Korthals Altes, A. Michels, M. Stephanov, and M. Teper, Phys. Rev.D55, (1997) 1047.
  17. R. C. Brower, D. A. Kessler, and H. Levine, Nucl. Phys. B205[FS5] (1982) 77.