Academia.eduAcademia.edu

Outline

Ontology-based Access Control for FAIR Data

2019, Data Intelligence

https://doi.org/10.1162/DINT_A_00029

Abstract

This paper focuses on fine-grained, secure access to FAIR data, for which we propose ontology-based data access policies. These policies take into account both the FAIR aspects of the data relevant to access (such as provenance and licence), expressed as metadata, and additional metadata describing users. With this tripartite approach (data, associated metadata expressing FAIR information, and additional metadata about users), secure and controlled access to object data can be obtained. This yields a security dimension to the “A” (accessible) in FAIR, which is clearly needed in domains like security and intelligence. These domains need data to be shared under tight controls, with widely varying individual access rights. In this paper, we propose an approach called Ontology-Based Access Control (OBAC), which utilizes concepts and relations from a data set's domain ontology. We argue that ontology-based access policies contribute to data reusability and can be reconciled with priv...

References (24)

  1. T. Berners-Lee. Information management: A proposal. (1990). Available at: https://www.w3.org/History/1989/ proposal.html.
  2. T. Berners-Lee, J. Hendler & O. Lassila. The semantic web. Scientific American 284(5) (2001), 34-43. Available at: http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21.
  3. C. Bizer, T. Heath & T. Berners-Lee. Linked data -The story so far. International Journal on Semantic Web and Information Systems 5(3)(2009), 1-22. doi:10.4018/jswis.2009081901.
  4. B. Mons, C. Neylon, J. Velterop, M. Dumontier, L.O. Bonino da Silva Santos & M.D. Wilkinson. Cloudy, increasingly FAIR; revisiting the FAIR Data guiding principles for the European Open Science Cloud. Information Services & Use 37 (2017), 49-56. doi:10.3233/ISU-170824.
  5. M.D. Wilkinson, M. Dumontier, Ij.J. Aalbersberg, G. Appleton, M. Axton, A. Baak, … & B. Mons. The FAIR guiding principles for scientific data management and stewardship. Scientific Data 3(2016), 160018. doi: 10.1038/sdata.2016.18.
  6. W. Safire. You are a suspect, The New York Times. (2002). Available at: https://www.nytimes.com/2002/11/14/ opinion/you-are-a-suspect.html.
  7. S. Wood. The paradox of police data. KULA: Knowledge Creation, Dissemination, and Preservation Studies 2(2018), 9. doi:10.5334/kula.34.
  8. P. James. Dark net marketplace data (Agora 2014-2015). (2017). Available at: https://kaggle.com/ philipjames11/dark-net-marketplace-drug-data-agora-20142015.
  9. Apache Jena -Apache Jena Fuseki, Apache, 2018. Available at: https://jena.apache.org/documentation/ fuseki2/.
  10. B. Parducci, H. Lochhart & R. Levinson (eds.) OASIS eXtensible access control Markup Language (XACML) TC. (2017). Available at: https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml.
  11. AuthZForce (Community Edition) -Authzforce, 2019. Available at: https://authzforce.ow2.org/.
  12. E. Yuan & J. Tong. Attributed based access control (ABAC) for Web services. In: IEEE International Conference on Web Services (ICWS'05), 2005, pp. 561-569. doi:10.1109/ICWS.2005.25.
  13. V.C. Hu, D. Ferraiolo, R. Kuhn, A. Schnitzer, K. Sandlin, R. Miller & K. Scarfone. Guide to attribute based access control (ABAC) definition and considerations, National Institute of Standards and Technology, 2014. doi:10.6028/NIST.SP.800-162.
  14. T. Priebe, W. Dobmeier & N. Kamprath. Supporting attribute-based access control with ontologies. In: The First International Conference on Availability, Reliability and Security (ARES'06), 2006, pp. 465-472. doi:10.1109/ARES.2006.127.
  15. H. Shen. A semantic-aware attribute-based access control model for Web services. In: A. Hua & S.-L. Chang (eds.) Algorithms and Architectures for Parallel Processing. Berlin: Springer, 2009, pp. 693-703.
  16. N.K. Sharma & A. Joshi. Representing attribute based access control policies in OWL. In: 2016 IEEE Tenth International Conference on Semantic Computing (ICSC), 2016, pp. 333-336. doi:10.1109/ICSC.2016.16.
  17. A. Padia, T. Finin & A. Joshi. Attribute-based fine grained access control for triple stores. In: The 3rd Society, Privacy and the Semantic Web -Policy and Technology Workshop, the 14th International Semantic Web Conference, 2015. Available at: https://ebiquity.umbc.edu/paper/abstract/id/706/Attribute-based-Fine- Grained-Access-Control-for-Triple-Stores.
  18. M. Console & M. Lenzerini. Data quality in ontology-based data access: The case of consistency. In: The Twenty-Eighth AAAI Conference on Artificial Intelligence, 2014, pp. 1020-1026. Available at: https://www. aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8552.
  19. Ontology-based Access Control for FAIR Data
  20. P. Holub, F. Kohlmayer, F. Prasser, M.Th. Mayrhofer, I. Schlünder, G.M. Martin,… & J.-E. Litton. Enhancing reuse of data and biological material in medical research: From FAIR to FAIR-Health. Biopreservation and Biobanking 16(2)(2018), 97-105. doi:10.1089/bio.2017.0110.
  21. M. Corpas, N.V. Kovalevskaya, A. McMurray & F.G.G. Nielsen. A FAIR guide for data providers to maximize sharing of human genomic data. PLOS Computational Biology 14 (2018), e1005873. doi:10.1371/journal. pcbi.1005873.
  22. I. Singh, M. Kuscuoglu, D.M. Harkins, G. Sutton, D.E. Fouts & K.E. Nelson. OMeta: An ontology-based, data- driven metadata tracking system. BMC Bioinformatics 20(2019), 8. doi:10.1186/s12859-018-2580-9.
  23. A. Landi, M. Thompson, V. Giannuzzi, F. Bonifazi, I. Labastida, L.O. Bonino da Silva Santos & M. Roos. The "A" of FAIR -as open as possible, as closed as necessary. Data Intelligence 2(2020), 47-55. doi: 10.1162/ dint_a_00027.
  24. I. Labastida & T. Margoni. Licensing FAIR data for reuse. Data Intelligence 2(2020), 199-207. doi: 10.1162/ dint_a_00042.