On seven-dimensional quaternionic contact solvable Lie groups
2014, Forum Mathematicum
Abstract
We answer in the affirmative a question posed by Ivanov and Vassilev on the existence of a seven-dimensional quaternionic contact manifold with closed fundamental 4-form and non-vanishing torsion endomorphism. Moreover, we show an approach to the classification of seven-dimensional solvable Lie groups having an integrable left invariant quaternionic contact structure. In particular, we prove that the unique seven-dimensional nilpotent Lie group admitting such a structure is the quaternionic Heisenberg group.
References (15)
- D. V. Alekseevskiȋ, B. N. Kimel ′ fel ′ d, Structure of homogeneous Rie- mannian spaces with zero Ricci curvature. (Russian) Funkcional. Anal. i Prilo Žen. 9(2) (1975), 5-11 (English translation: Functional Anal. Appl. 9 (1975), 97-102).
- J. Alt, On the twistor space of a quaternionic contact manifold, J. Geom. Phys. 61 (2011), 1783-1788.
- O. Biquard, Quaternionic contact structures, Quaternionic structures in mathematics and physics (Rome, 1999), 23-30 (electronic), Univ. Studi Roma "La Sapienza", Roma, 1999.
- O. Biquard, Métriques d'Einstein asymptotiquement symétriques, Astérisque 265 (2000).
- Ch. Boyer, K. Galicki, B. Mann, The geometry and topology of 3- Sasakian manifolds, J. Reine Angew. Math. 455 (1994), 183-220.
- L. C. de Andrés, M. Fernández, S. Ivanov, J.A. Santisteban, L. Ugarte, D. Vassilev, Quaternionic Kähler and Spin(7) metrics arising from quaternionic contact Einstein structures. Preprint 2010, arXiv:1009.2745.
- J. Davidov, S. Ivanov, I. Minchev, The twistor space of a quater- nionic contact manifold. To appear in Quart. J. Math. Preprint 2010, arXiv:1010.4994.
- D. Duchemin, Quaternionic contact structures in dimension 7, Ann. Inst. Fourier 56 (4) (2006), 851-885.
- D. Duchemin, Quaternionic contact hypersurfaces. Preprint 2010, arXiv:math/0604147.
- S. Ivanov, I. Minchev, D. Vassilev, Extremals for the Sobolev inequality on the seven dimensional quaternionic Heisenberg group and the quater- nionic contact Yamabe problem, J. Eur. Math. Soc. 12 (4) (2010), 1041- 1067.
- S. Ivanov, I. Minchev, D. Vassilev, Quaternionic contact Einstein struc- tures and the quaternionic contact Yamabe problem. Preprint 2010, arXiv:math/0611658.
- S. Ivanov, D. Vassilev, Conformal quaternionic contact curvature and the local sphere theorem, J. Math. Pures Appl. 93 (2010), 277-307.
- S. Ivanov, D. Vassilev, Quaternionic contact manifolds with a closed fundamental 4-form, Bull. London Math. Soc. 42 (2010), 1021-1030.
- S. Ivanov, D. Vassilev, Extremals for the Sovolev inequality and the quaternionic contact Yamabe problem, World Scientific Publish., 2011.
- W. Wang, The Yamabe problem on quaternionic contact manifolds, Ann. Mat. Pura Appl. 186 (2) (2007), 359-380.