Academia.eduAcademia.edu

Outline

On seven-dimensional quaternionic contact solvable Lie groups

2014, Forum Mathematicum

Abstract

We answer in the affirmative a question posed by Ivanov and Vassilev on the existence of a seven-dimensional quaternionic contact manifold with closed fundamental 4-form and non-vanishing torsion endomorphism. Moreover, we show an approach to the classification of seven-dimensional solvable Lie groups having an integrable left invariant quaternionic contact structure. In particular, we prove that the unique seven-dimensional nilpotent Lie group admitting such a structure is the quaternionic Heisenberg group.

References (15)

  1. D. V. Alekseevskiȋ, B. N. Kimel ′ fel ′ d, Structure of homogeneous Rie- mannian spaces with zero Ricci curvature. (Russian) Funkcional. Anal. i Prilo Žen. 9(2) (1975), 5-11 (English translation: Functional Anal. Appl. 9 (1975), 97-102).
  2. J. Alt, On the twistor space of a quaternionic contact manifold, J. Geom. Phys. 61 (2011), 1783-1788.
  3. O. Biquard, Quaternionic contact structures, Quaternionic structures in mathematics and physics (Rome, 1999), 23-30 (electronic), Univ. Studi Roma "La Sapienza", Roma, 1999.
  4. O. Biquard, Métriques d'Einstein asymptotiquement symétriques, Astérisque 265 (2000).
  5. Ch. Boyer, K. Galicki, B. Mann, The geometry and topology of 3- Sasakian manifolds, J. Reine Angew. Math. 455 (1994), 183-220.
  6. L. C. de Andrés, M. Fernández, S. Ivanov, J.A. Santisteban, L. Ugarte, D. Vassilev, Quaternionic Kähler and Spin(7) metrics arising from quaternionic contact Einstein structures. Preprint 2010, arXiv:1009.2745.
  7. J. Davidov, S. Ivanov, I. Minchev, The twistor space of a quater- nionic contact manifold. To appear in Quart. J. Math. Preprint 2010, arXiv:1010.4994.
  8. D. Duchemin, Quaternionic contact structures in dimension 7, Ann. Inst. Fourier 56 (4) (2006), 851-885.
  9. D. Duchemin, Quaternionic contact hypersurfaces. Preprint 2010, arXiv:math/0604147.
  10. S. Ivanov, I. Minchev, D. Vassilev, Extremals for the Sobolev inequality on the seven dimensional quaternionic Heisenberg group and the quater- nionic contact Yamabe problem, J. Eur. Math. Soc. 12 (4) (2010), 1041- 1067.
  11. S. Ivanov, I. Minchev, D. Vassilev, Quaternionic contact Einstein struc- tures and the quaternionic contact Yamabe problem. Preprint 2010, arXiv:math/0611658.
  12. S. Ivanov, D. Vassilev, Conformal quaternionic contact curvature and the local sphere theorem, J. Math. Pures Appl. 93 (2010), 277-307.
  13. S. Ivanov, D. Vassilev, Quaternionic contact manifolds with a closed fundamental 4-form, Bull. London Math. Soc. 42 (2010), 1021-1030.
  14. S. Ivanov, D. Vassilev, Extremals for the Sovolev inequality and the quaternionic contact Yamabe problem, World Scientific Publish., 2011.
  15. W. Wang, The Yamabe problem on quaternionic contact manifolds, Ann. Mat. Pura Appl. 186 (2) (2007), 359-380.