A Low-Complexity Edward-Curve Point Multiplication Architecture
2021, Electronics
https://doi.org/10.3390/ELECTRONICS10091080Abstract
The Binary Edwards Curves (BEC) are becoming more and more important, as compared to other forms of elliptic curves, thanks to their faster operations and resistance against side channel attacks. This work provides a low-complexity architecture for point multiplication computations using BEC over GF(2233). There are three major contributions in this article. The first contribution is the reduction of instruction-level complexity for unified point addition and point doubling laws by eliminating multiple operations in a single instruction format. The second contribution is the optimization of hardware resources by minimizing the number of required storage elements. Finally, the third contribution is to reduce the number of required clock cycles by incorporating a 32-bit finite field digit-parallel multiplier in the datapath. As a result, the achieved throughput over area ratio over GF(2233) on Virtex-4, Virtex-5, Virtex-6 and Virtex-7 Xilinx FPGA (Field Programmable Gate Array) device...
References (34)
- Bansal, S.; Kumar, D. IoT Ecosystem: A Survey on Devices, Gateways, Operating Systems, Middleware and Communication. Int. J. Wirel. Inf. Netw. 2020, 27, 340-364. [CrossRef]
- Pal, S.; Hitchens, M.; Rabehaja, T.; Mukhopadhyay, S. Security Requirements for the Internet of Things: A Systematic Approach. Sensors 2020, 20, 5897. [CrossRef] [PubMed]
- Mthunzi, S.N.; Benkhelifa, E.; Bosakowski, T.; Guegan, C.G.; Barhamgi, M. Cloud computing security taxonomy: From an atomistic to a holistic view. Future Gener. Comput. Syst. 2020, 107, 620-644. [CrossRef]
- Hossain, M.; Fotouhi, M.; Hasan, R. Towards an Analysis of Security Issues, Challenges, and Open Problems in the Internet of Things. In Proceedings of the 2015 IEEE World Congress on Services, New York, NY, USA, 27 June-2 July 2015; pp. 21-28.
- Agarwal, S.; Oser, P.; Lueders, S. Detecting IoT Devices and How They Put Large Heterogeneous Networks at Security Risk. Sensors 2019, 19, 4107. [CrossRef]
- Kumar, P.; Bhatt, A.K. Enhancing multi-tenancy security in the cloud computing using hybrid ECC-based data encryption approach. IET Commun. 2020, 14, 3212-3222. [CrossRef]
- Sfar, A.R.; Natalizio, E.; Challal, Y.; Chtourou, Z. A roadmap for security challenges in the Internet of Things. Digit. Commun. Netw. 2018, 4, 118-137. [CrossRef]
- Hu, X.; Zheng, X.; Zhang, S.; Li, W.; Cai, S.; Xiong, X. A High-Performance Elliptic Curve Cryptographic Processor of SM2 over GF(p). Electronics 2019, 8, 431. [CrossRef]
- Rashid, M.; Jafri, A.R.; Al-Somani, T.F. Flexible architectures for cryptographic algorithms: a systematic literature review. J. Circuits Syst. Comput. 2019, 28, 1930003. [CrossRef]
- Hu, X.; Zheng, X.; Zhang, S.; Cai, S.; Xiong, X. A Low Hardware Consumption Elliptic Curve Cryptographic Architecture over GF(p) in Embedded Application. Electronics 2018, 7, 104. [CrossRef]
- Rashid, M.; Imran, M.; Sajid, A. An Efficient Elliptic-curve Point Multiplication Architecture for High-speed Cryptographic Applications. Electronics 2020, 9, 2126. [CrossRef]
- Awaludin, A.M.; Larasati, H.T.; Kim, H. High-Speed and Unified ECC Processor for Generic Weierstrass Curves over GF(p) on FPGA. Sensors 2021, 21, 1451. [CrossRef]
- Bernstein, D.; Lange, T.; Farashahi, R.R. Binary Edwards Curves. Lect. Notes Comput. Sci. 2008, 5154, 244-265.
- Smart, N.P. The Hessian form of an elliptic curve. Lect. Notes Comput. Sci. 2001, 2162, 118-125.
- Joye, M.; Tibouchi, M.; Vergnaud, D. Huff's model for elliptic curve, Algorithmic Number Theory (ANTS-IX).Lect. Notes Comput. Sci. 2010, 6197, 234-250.
- Suárez-Albela, M.; Fraga-Lamas, P.; Fernández-Caramés, T.M. A Practical Evaluation on RSA and ECC-Based Cipher Suites for IoT High-Security Energy Efficient Fog and Mist Computing Devices. Sensors 2018, 18, 3868. [CrossRef]
- Azarderakhsh, R.; Reyhani-Masoleh, A. Efficient FPGA Implementations of Point Multiplication on Binary Edwards and Generalized Hessian Curves Using Gaussian Normal Basis.IEEE Trans. Very Large Scale Integr. Syst. 2012, 20, 1453-1466.
- Lucca, A.V.; Sborz, G.A.M.; Leithardt, V.R.Q.; Beko, M.; Zeferino, C.A.; Parreira, W.D. A Review of Techniques for Implementing Elliptic Curve Point Multiplication on Hardware. J. Sens. Actuator Netw. 2021, 10, 3. [CrossRef]
- Chatterjee, A.; Gupta, I.S. FPGA implementation of extended reconfigurable binary Edwards curve based processor. In Proceed- ings of the International Conference on Computing, Networking and Communications, Maui, HI, USA, 30 January-2 February 2012; pp. 211-215.
- Rashidi, B. Efficient hardware implementations of point multiplication for binary Edwards curves. Int. J. Circuit Theory Appl. 2018, 46, 1516-1533. [CrossRef]
- Rashidi, B.; Abedini, M. Efficient Lightweight Hardware Structures of Point Multiplication on Binary Edwards Curves for Elliptic Curve Cryptosystems. J. Circuits Syst. Comput. 2019, 28, 1950149. [CrossRef]
- Rashidi, B.; Farashahi, R.R.; Sayedi, S.M.. High-speed Hardware Implementations of Point Multiplication for Binary Edwards and Generalized Hessian Curves. IACR Cryptol. Eprint Arch. 2017, 2017, 5.
- Fournaris, A.P.; Koufopavlou, O. Affine coordinate binary edwards curve scalar multiplier with side channel attack resistance. In Proceedings of the Euromicro Conference on Digital System Design, Madeira, Portugal, 26-28 August 2015; pp. 431-437.
- Lara-Nino, C.A.; Diaz-Perez, A.; Morales-Sandoval, M. Lightweight elliptic curve cryptography accelerator for internet of things applications. Ad Hoc Netw. 2020, 103, 102159. [CrossRef]
- Salarifard, R.; Bayat-Sarmadi, S.; Mosanaei-Boorani, H. A Low-Latency and Low-Complexity Point-Multiplication in ECC. IEEE Trans. Circuits Syst. I Regul. Pap. 2018, 65, 2869-2877. [CrossRef]
- Choi, P.; Lee, M.; Kim, J.; Kim, D.K. Low-Complexity Elliptic Curve Cryptography Processor Based on Configurable Partial Modular Reduction Over NIST Prime Fields. IEEE Trans. Circuits Syst. II Express Briefs 2018, 65, 1703-1707. [CrossRef]
- Choi, P.; Lee, M.; Kim, J.; Kim, D.K. Low-Cost and Fast Hardware Implementations of Point Multiplication on Binary Edwards Curves. In Proceedings of the Iranian Conference on Electrical Engineering (ICEE), Mashhad, Iran, 8-10 May 2018; pp. 17-22.
- Mehrabi, M.A.; Doche, C. Low-Cost, Low-Power FPGA Implementation of ED25519 and CURVE25519 Point Multiplication. Information 2019, 10, 285. [CrossRef]
- Islam, M.M.; Hossain, M.S.; Hasan, M.K.; Shahjalal, M.; Jang, Y.M. Design and Implementation of High-Performance ECC Processor with Unified Point Addition on Twisted Edwards Curve. Sensors 2020, 20, 5148. [CrossRef]
- Jin, C.; Xu, C.; Zhang, X.; Li, F. A Secure ECC-based RFID Mutual Authentication Protocol to Enhance Patient Medication Safety. J. Med Syst. 2016, 40, 1. [CrossRef]
- Lee, C.; Li, C.; Chen, Z.; Chen, S.; Lai, Y. A novel authentication scheme for anonymity and digital rights management based on elliptic curve cryptography. Int. J. Electron. Secur. Digit. Forensics 2019, 11, 96-117. [CrossRef]
- Farashahi, R.R.; Hosseini, S.G. Differential Addition on Binary Elliptic Curves. In Proceeding of International Workshop on the Arithmetic of Finite Fields, Ghent, Belgium, 13-15 July 2016; pp 349-364.
- Federal Information Processing Standards Publication (FIPS PUB 186-4). Digital Signature Standard (DSS). Available online: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf (accessed on 13 April 2021).
- Parrilla, L.; Lloris, A.; Castillo, E.; Garcia, A. Minimum-clock-cycle Itoh-Tsujii algorithm hardware implementation for cryptogra- phy applications over GF(2 233 ) fields. Electron. Lett. 2012, 48,1126-1128. [CrossRef]