Academia.eduAcademia.edu

Outline

A Coalgebraic Perspective on Minimization and Determinization

2012, Lecture Notes in Computer Science

https://doi.org/10.1007/978-3-642-28729-9_4

Abstract

Coalgebra offers a unified theory of state based systems, including infinite streams, labelled transition systems and deterministic automata. In this paper, we use the coalgebraic view on systems to derive, in a uniform way, abstract procedures for checking behavioural equivalence in coalgebras, which perform (a combination of) minimization and determinization. First, we show that for coalgebras in categories equipped with factorization structures, there exists an abstract procedure for equivalence checking. Then, we consider coalgebras in categories without suitable factorization structures: under certain conditions, it is possible to apply the above procedure after transforming coalgebras with reflections. This transformation can be thought of as some kind of determinization. We will apply our theory to the following examples: conditional transition systems and (non-deterministic) automata.

References (25)

  1. Adámek, J.: Free algebras and automata realizations in the language of categories. Com- ment. Math. Univ. Carolin. 15, 589-602 (1974)
  2. Adámek, J., Bonchi, F., Hülsbusch, M., König, B., Milius, S., Silva, A.: A coalgebraic per- spective on minimization and determinization (extended version), http://alexandrasilva.org/files/fossacs12-extended.pdf
  3. Adámek, J., Herrlich, H., Strecker, G.E.: Abstract and Concrete Categories -The Joy of Cats. Wiley (1990)
  4. Adámek, J., Koubek, V.: On the greatest fixed point of a set functor. TCS 150, 57-75 (1995)
  5. Adámek, J., Milius, S., Moss, L.S., Sousa, L.: Well-pointed coalgebras. In: Birkedal, L. (ed.) FOSSACS 2012. LNCS, vol. 7213, Springer, Heidelberg (2012)
  6. Boreale, M.: Weighted Bisimulation in Linear Algebraic Form. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 163-177. Springer, Heidelberg (2009)
  7. Brzozowski, J.A.: Canonical regular expressions and minimal state graphs for definite events. Mathematical Theory of Automata 12(6), 529-561 (1962)
  8. Brzozowski, J., Tamm, H.: Theory of Átomata. In: Mauri, G., Leporati, A. (eds.) DLT 2011. LNCS, vol. 6795, pp. 105-116. Springer, Heidelberg (2011)
  9. Ferrari, G.L., Montanari, U., Tuosto, E.: Coalgebraic minimization of HD-automata for the pi-calculus using polymorphic types. TCS 331(2-3), 325-365 (2005)
  10. Fitting, M.: Bisimulations and boolean vectors. In: Advances in Modal Logic, vol. 4, pp. 1-29. World Scientific Publishing (2002)
  11. Gumm, H.P.: From T -Coalgebras to Filter Structures and Transition Systems. In: Fiadeiro, J.L., Harman, N.A., Roggenbach, M., Rutten, J. (eds.) CALCO 2005. LNCS, vol. 3629, pp. 194-212. Springer, Heidelberg (2005)
  12. Gumm, H.P.: On minimal coalgebras. Applied Categorical Structures 16, 313-332 (2008)
  13. Hasuo, I., Jacobs, B., Sokolova, A.: Generic trace semantics via coinduction. LMCS 3(4:11), 1-36 (2007)
  14. Hennessy, M., Lin, H.: Symbolic bisimulations. TCS 138(2), 353-389 (1995)
  15. Hermida, C., Jacobs, B.: Structural induction and coinduction in a fibrational setting. Infor- mation and Computation 145, 107-152 (1998)
  16. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation, 3rd edn. Wesley (2006)
  17. Kurz, A.: Logics for Coalgebras and Applications to Computer Science. PhD thesis, Ludwigs-Maximilians-Universität München (2000)
  18. Mac Lane, S.: Categories for the Working Mathematician. Springer, Heidelberg (1971)
  19. Mulry, P.S.: Lifting Theorems for Kleisli Categories. In: Main, M.G., Melton, A.C., Mis- love, M.W., Schmidt, D., Brookes, S.D. (eds.) MFPS 1993. LNCS, vol. 802, pp. 304-319.
  20. Springer, Heidelberg (1994)
  21. Panangaden, P.: Duality in probabilistic automata Slides (May 19, 2011), http://www.cs.mcgill.ca/ ˜prakash/Talks/duality_talk.pdf
  22. Power, J., Turi, D.: A coalgebraic foundation for linear time semantics. In: Proc. of CTCS 1999. ENTCS, vol. 29, pp. 259-274 (1999)
  23. Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. TCS 249, 3-80 (2000)
  24. Staton, S.: Relating coalgebraic notions of bisimulation. LMCS 7(1) (2011)
  25. Worrell, J.: On the final sequence of a finitary set functor. TCS 338(1-3), 184-199 (2005)