Orbits of homogeneous polynomials on Banach spaces
2020, Ergodic Theory and Dynamical Systems
Abstract
We study the dynamics induced by homogeneous polynomials on Banach spaces. It is known that no homogeneous polynomial defined on a Banach space can have a dense orbit. We show, a simple and natural example of a homogeneous polynomial with an orbit that is at the same time d-dense (the orbit meets every ball of radius d), weakly dense and such that Γ • OrbP (x) is dense for every Γ ⊂ C that is either unbounded or that has 0 as an accumulation point. Moreover we generalize the construction to arbitrary infinite dimensional separable Fréchet spaces. To prove this we study Julia sets of homogeneous polynomials on Banach spaces.
References (23)
- J. Appell, E. De Pascale, and A. Vignoli. Nonlinear spectral theory, volume 10. Walter de Gruyter, 2004.
- R. M. Aron and A. Miralles. Chaotic polynomials in spaces of continuous and differentiable functions. Glasg. Math. J., 50(2):319-323, 2008.
- F. Bayart and E. Matheron. Dynamics of linear operators. Cambridge Tracts in Mathematics 179. Cambridge: Cam- bridge University Press. xiv, 337 p., 2009.
- N. C. Bernardes. On orbits of polynomial maps in Banach spaces. Quaest. Math., 21(3-4):311-318, 1998.
- N. C. Bernardes and A. Peris. On the existence of polynomials with chaotic behaviour. Journal of Function Spaces and Applications, 2013, 2013.
- J. Bès and J. A. Conejero. An extension of hypercyclicity for n-linear operators. In Abstract and Applied Analysis, volume 2014. Hindawi Publishing Corporation, 2014.
- J. Bonet and A. Peris. Hypercyclic operators on non-normable Fréchet spaces. J. Funct. Anal., 159(2):587-595, 1998.
- P. S. Bourdon and N. S. Feldman. Somewhere dense orbits are everywhere dense. Indiana University mathematics journal, 52(3):811, 2003.
- R. Cardeccia and S. Muro. A hypercyclic homogeneous polynomial on H(C). Journal of Approximation Theory, 2017.
- K. C. Chan and R. Sanders. A weakly hypercyclic operator that is not norm hypercyclic. Journal of Operator Theory, 52(1):39-59, 2004.
- S. Charpentier, R. Ernst, and Q. Menet. Γ-supercyclicity. J. Funct. Anal., 270(12):4443-4465, 2016.
- T.-C. Dinh and N. Sibony. Dynamics in several complex variables: endomorphisms of projective spaces and polynomial- like mappings. In Holomorphic dynamical systems, pages 165-294. Springer, 2010.
- N. S. Feldman. Perturbations of hypercyclic vectors. J. Math. Anal. Appl., 273(1):67-74, 2002.
- K.-G. Grosse-Erdmann and S. G. Kim. Bihypercyclic bilinear mappings. Journal of Mathematical Analysis and Appli- cations, 399(2):701-708, 2013.
- K.-G. Grosse-Erdmann and A. Peris Manguillot. Linear chaos. Universitext. Berlin: Springer. xii, 386 p. EUR 53.45 , 2011.
- S. G. Kim, A. Peris, and H. G. Song. Numerically hypercyclic operators. Integral Equations and Operator Theory, 72(3):393-402, Mar 2012.
- S. G. Kim, A. Peris, and H. G. Song. Numerically hypercyclic polynomials. Archiv der Mathematik, 99(5):443-452, Nov 2012.
- F. León-Saavedra and V. Müller. Rotations of hypercyclic and supercyclic operators. Integral Equations and Operator Theory, 50(3):385-391, Nov 2004.
- F. Martínez-Giménez and A. Peris. Existence of hypercyclic polynomials on complex fréchet spaces. Topology and its Applications, 156(18):3007-3010, 2009.
- F. Martínez-Giménez and A. Peris. Chaotic polynomials on sequence and function spaces. International Journal of Bifurcation and Chaos, 20(09):2861-2867, 2010.
- A. Peris. Erratum to: "Chaotic polynomials on Fréchet spaces". Proc. Am. Math. Soc., 129(12):3759-3760, 2001.
- F. L. Saavedra. The positive supercyclicity theorem. Extracta Mathematicae, 19(1):145-149, 2004.
- T. Ueda. Fatou sets in complex dynamics on projective spaces. J. Math. Soc. Japan, 46(3):545-555, 1994.