Academia.eduAcademia.edu

Outline

Safe flying for an UAV helicopter

2007

Abstract

Today small autonomous helicopters offer a low budget platform for aerial applications such as surveillance (both military and civil), land management and earth sciences. In this paper we introduce a prototype of autonomous aerial vehicle, the Helibot helicopter, specifically designed for applications in cooperative networks. Fundamental steps in the design process of an UAV are shown. We also present work in progress in the field of failure detection and a novel idea to the problem of failure recovery using a terrain vision system.

References (27)

  1. Office of Secretary of Defence. Unmanned aerial systems roadmap 2005-2030. Technical report, Washington, August 2005.
  2. Dunbabin M., Corke P., and Buskey G. Low cost vision based auv guidance system for reef navigation. Proceedings of IEEE International Conference on Robotics and Automation (ICRA), pages 7-12, 2004.
  3. Jonathan Roberts, Pavan Sikka, and Leslie Overs. System design for a small autonomous helicopter. Australian Conference on Robotics and Automation , Melbourne, 2000.
  4. Merino L., Caballero F., Martinez de Dios J.R., and Ollero A. Cooper- ative fire detection using unmanned aerial vehicles. Proceedings. ICRA 05, IEEE International Conference on Robotics and Automation, 2005.
  5. Randal W. Beard et al. Decentralized cooperative aerial surveillance using fixed-wing miniature uav. Proceedings of the IEEE, 2006.
  6. A. Monteriù, P. Asthana, K. Valavanis, and S. Longhi. Experimental validation of a real-time model-based sensor fault detection and isolation system for unmanned ground vehicles. MED, Ancona, 2006.
  7. G. Ippoliti, A. Monteriù, and S. Longhi. Model-based sensor fault diagnostic system for a smart wheelchair. Proceedings of the 16th IFAC World Congress, Prague, Czech Republic, July 2005.
  8. A. Monteriù, P. Asthana, K. Valavanis, and S. Longhi. Model-based sen- sor fault detection and isolation system for unmanned ground vehicles: Theoretical aspects (part i and ii). Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Roma, April 2007.
  9. P. Zingaretti and E. Frontoni. Appearance based robotics -robot localization in partially explored environments. IEEE Robotics and Automation Magazine, pages 59-68, 2006.
  10. G. Forlani, C. Nardinocchi, M. Scaioni, and P. Zingaretti. Complete classification of raw lidar data and 3d reconstruction of buildings. Pattern Analisys and Applications, Springer-Verlag, Vol 8(4):pages 357- 374, 2006.
  11. J.H. Kim and S. Sukkarieh. A baro-altimeter augmented ins/gps navigation system for an uninhabited aerial vehicle. Int. Symp. on Satellite Navigation Technologys, 2003.
  12. L. Jetto, S. Longhi, and G. Venturini. Development and experimental validation of an adaptive extended kalman filter for the localization of mobile robots. IEEE Trans. on Robotics and Automation, pages 219- 229, 1999.
  13. C. Fulgenzi, G. Ippoliti, and S. Longhi. Experimental validation of fast slam algorithm characterized by a linear features based map. Proceeding of 8th International IFAC SYROCO, September 2006.
  14. G. Ippoliti, L. Jetto, A. La Manna, and S. Longhi. Improving the robustness properties of robot localization procedures with respect to en- vironment features uncertainties. Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Barcelona, 2005.
  15. M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki. Diagnosis and Fault-Tolerant Control. Heidelberg. Springer-Verlag, 2003.
  16. M. Blanke, V. Cocquempot, R. Izadi Zamanabadi, and M. Staroswiecki. Residual generation for the ship benchmark using structural approach. In Proc. of Int. Conference on CONTROL'98, Swansea, UK, Sep 1998.
  17. M. Blanke, H. Niemann, and T. Lorentzen. Structural analysis -a case study of the romer satellite. In Proc. of IFAC Safeprocess 2003, Washington, DC, USA, 2003.
  18. Basseville M. and Nikiforov I.V. Detection of Abrupt Changes: Theory and Application. Prentice-Hall, 1993.
  19. T. T. Chien and M. B. Adams. A sequential failure detection technique and its application. IEEE Trans. on Automatic Control, 1976.
  20. A. S. Willsky and H. L. Jones. A generalized likelihood ratio approach to the detection and estimation of jumps in linear systems. IEEE Trans. on Automatic Control, pages 108-112, Feb. 1976.
  21. N. J. Gordon, D. J. Salmond, and A. F. M. Smith. Novel approach to nonlinear/non-gaussian bayesian state estimation. In Proc. Inst. Elect. Eng. F, volume 140, pages 107-113, 1993.
  22. G. Kitagawa. Monte-carlo filter and smoother for non-gaussian nonlinear state space models. J. of Computat. Statist. Assoc., pages 1-25, 1996.
  23. U.B. Hald, M.V. Hesselbek, J.T. Holmgaard, C.S. Jensen, S.L. Jakobsen, and M. Siegumfeldt. Autonomous helicopter -modelling and control. Report, Aalborg university, 2005.
  24. M.A. Mnich R.K. Heffley. Minimum-complexity helicopter simulation math model. Technical report, NASA, 1988.
  25. E. Frontoni and P. Zingaretti. Adaptive and fast scale invariant feature extraction. Second International Conference on Computer Vision Theory and Applications, Workshop on Robot Vision, Barcelona, 2007.
  26. E. Frontoni and P. Zingaretti. Feature extraction under variable lighting conditions. CISI 2006, Ancona, Italy,, September 2005.
  27. A. D'Amico, G. Ippoliti, and S. Longhi. A multiple models approach for adaptation and learning in mobile robots control. Technical report, Università Politecnica delle Marche, 2006.