Quantum Markov Chains Associated with Open Quantum Random Walks
2019, Journal of Statistical Physics
https://doi.org/10.1007/S10955-019-02342-ZAbstract
In this paper we construct (nonhomogeneous) quantum Markov chains associated with open quantum random walks. The quantum Markov chain, like the classical Markov chain, is a fundamental tool for the investigation of the basic properties such as reducibility/irreducibility, recurrence/transience, accessibility, ergodicity, etc, of the underlying dynamics. Here we focus on the discussion of the reducibility and irreducibility of open quantum random walks via the corresponding quantum Markov chains. Particularly we show that the concept of reducibility/irreducibility of open quantum random walks in this approach is equivalent to the one previously done by Carbone and Pautrat. We provide with some examples. We will see also that the classical Markov chains can be reconstructed as quantum Markov chains.
References (27)
- L. Accardi, Nonrelativistic quantum mechanics as a noncommutative Markov process, Adv. Math., 20 (1976), 329-366 .
- L. Accardi, Local perturbations of conditional expectations, J. Math. Anal. Appl. 72 (1979), 34-69.
- L. Accardi, Topics in quantum probability, Phys. Rep. 77 (1981), 169-192.
- L. Accardi and F. Fidaleo, Quantum Markov fields, Infin. Dimens. Anal. Quan- tum Probab. Relat. Top. 06 (2003), 123.
- L. Accardi and F. Fidaleo, Non-homogeneous quantum Markov states and quan- tum Markov fields, J. Funct. Anal. 200 (2) (2003), 324-347.
- L. Accardi, D. Koroliuk, Quantum Markov chains: The recurrence problem, QP III, World Scientific, 1991.
- L. Accardi, D. Koroliuk, Stopping times for quantum Markov chains, J. Theor. Probab. 5 (1992), 521-535.
- L. Accardi, A. Frigerio, Markovian cocycles, Proc. Royal Irish Acad. 83A (1983), 251-263.
- L. Accardi, F. Mukhamedov, M. Saburov, On quantum Markov chains on Cay- ley tree I: Uniqueness of the associated chain with XY -model on the Cayley tree of order two, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 14 (03) (2014), 443-463.
- L. Accardi, F. Mukhamedov, M. Saburov, On quantum Markov chains on Cay- ley tree II: Phase transitions for the associated chain with XY -model on the Cayley tree of order three, Ann. Henri Poincaré 12 (6) (2011), 1109-1144.
- L. Accardi, F. Mukhamedov, M. Saburov, On quantum Markov chains on Cay- ley tree III: Ising model, J. Stat. Phys. 157 (2) (2014), 303-329.
- L. Accardi and G. S. Watson, Quantum random walks. In: Accardi L., von Waldenfels W. (eds) Quantum Probability and Applications IV. Lecture Notes in Mathematics, 1396, Springer, Berlin, Heidelberg, 1989.
- S. Attal, N. Guillotin-Plantard, and C. Sabot, Central limit theorems for open quantum random walks and quantum measurement records, Ann. Henri Poincaré 16(1) (2015), 15-43.
- S. Attal, F. Petruccione, C. Sabot, I. Sinayskiy, Open quantum random walks, J. Stat. Phys. 147 (2012), 832-852.
- S. Attal, F. Petruccione, and I. Sinayskiy, Open quantum walks on graphs, Phys. Lett. A 376, no. 18, 1545-1548, (2012).
- O. Brattelli and D. W. Robinson, Operator algebras and quantum statistical mechanics 1, 2nd ed., Springer-Verlag, New York, 1987.
- R. Carbone, Y. Pautrat, Open quantum random walks: Reducibility, Period, Ergodic properties, Ann. Henri Poincaré 17 (2016), 99-135 .
- A. Dhahri, F. Mukhamedov, Open quantum random walks, quantum Markov chains and recurrence, preprint.
- F. Fagnola, Quantum Markov semigroups and quantum flows, Proyecciones 18 (1999) 1-144.
- F. Fagnola, R. Pellicer, Irreducible and periodic positive maps, Commun. on Stochastic Anal. 3 (2009), 407-418.
- C. F. Lardizabal, Open quantum random walks and the mean hitting time formula, Quantum Inf. Comput. 17 (1/2) (2017), 79-105.
- C. F. Lardizabal and R. R. Souza, Open quantum random walks: ergodicity, hitting times, gambler's ruin and potential theory, J. Stat. Phys. 164(5) (2016), 1122-1156.
- Y.-G. Lu, Quantum Markov chains and classical random sequences, Nagoya Math. J. 139 (1995), 173-183.
- Y. Nakagami, Infinite tensor products of von Neumann algebras, I, Kodai Math. Sem. Rep. 22 (1970), 341-354.
- Y. M. Park, Dynamical entropy of generalized quantum Markov chains, Lett. Math. Phys. 32 (1994), 63-74.
- Y. M. Park, H. H. Shin, Dynamical entropy of generalized quantum Markov chains over infinite dimensional algebras, J. Math. Phys. 38 (1997), 6287-6303.
- F. Riesz and B. Sz.-Nagy, Functional analysis, Ungar, New York, 1955.