Academia.eduAcademia.edu

Outline

Software agents & human behavior

2019, Memorial University of Newfoundland

https://doi.org/10.1007/S10694-019-00819-7

Abstract

People make important decisions in emergencies. Often these decisions involve high stakes in terms of lives and property. Bhopal disaster (1984), Piper Alpha disaster (1988), Montara blowout (2009), and explosion on Deepwater Horizon (2010) are a few examples among many industrial incidents. In these incidents, those who were in-charge took critical decisions under various ental stressors such as time, fatigue, and panic. This thesis presents an application of naturalistic decision-making (NDM), -i-

References (558)

  1. Abū Ḥāmid Muḥammad ibn Muḥammad Al-Ghazālī. (1998). The niche of lights: A parallel English-Arabic text (translated by David Buchman) (1st ed.; D. Buchman, Trans.). Provo, UT, USA: Brigham Young University.
  2. Alanen, L. (2014). The Second Meditation and the nature of the human mind. In D. Cunning (Ed.), The Cambridge Companion to Descartes' Meditations (pp. 88- 106). https://doi.org/10.1017/CCO9781139088220.005
  3. Allen, G. L. (1999). Spatial abilities, cognitive maps and wayfinding: bases for individual differences in spatial cognition and behavior. In R. G. Golledge (Ed.), Wayfinding behavior (pp. 46-80). The John Hopkins University Press.
  4. Aristotle. (2001). Aristotle's On the soul and on memory and recollection [Aristotle's De Anima] (J. Sachs, Trans.). Ann Arbor, Michigan, USA: Green Lion Press.
  5. BBC, A. N. (2013, October). Nairobi siege: How the attack happened. Retrieved from https://www.bbc.com/news/world-africa-24189116
  6. Borowiec, S., & Lien, T. (2016, March). AlphaGo beats human Go champ in milestone for artificial intelligence. Retrieved from https://www.latimes.com/world/asia/la-fg-korea-alphago-20160312-story.html
  7. Bratman, M. (1987). Intention, plans, and practical reason. Cambridge, MA: Harward University Press.
  8. Chowdhury, S. (2016). Optimization and Business Improvement: Studies in Upstream Oil and Gas Industry. New Jersey: Wiley.
  9. Dastani, M., & Testerink, B. (2014). From Multi-Agent Programming to Object Oriented Design Patterns. In F. Dalpiaz, J. Dix, & M. B. van Riemsdijk (Eds.), Engineering Multi-Agent Systems. EMAS 2014. Lecture Notes in Computer Science, Volume 8758. (pp. 204-226). https://doi.org/10.1007/978-3-319-14484- 9_11
  10. Descartes, R. (2015). The passions of the soul and other late philosophical writings (M. Moriarty, Trans.). Oxford, UK: Oxford University Press.
  11. Dyson, G. (2012). Turing's Cathedral. New York, NY: Pantheon Books.
  12. Endsley, M. (1988). Design and Evaluation for Situation Awareness Enhancement. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 32. https://doi.org/10.1177/154193128803200221
  13. Endsley, M. (1995). Toward a theory of situation awareness in dynamic systems. Human Factors: The Journal of the Human Factors and Ergonomics Society, 37(1), 32-64.
  14. Endsley, M. (2000). Theoretical underpinnings of situation awareness: A critical review. In M. R. Endsley & D. J. Garland (Eds.), Situation Awareness Analysis and Measurement (pp. 3-32). Mahwah, New Jersey: Lawrence Erlbaum Associates, Publishers.
  15. Golledge, R. G. (1977). Multidimensional analysis and environmental behavior and design. In I. Altman & J. F. Wohlwill (Eds.), Human behavior and environment: advances in theory and research. Heidelberg: Springer Berlin Heidelberg.
  16. Golledge, R. G. (1990). The Conceptual and Empirical Basis of a General Theory of Spatial Knowledge. In Spatial Choices and Processes (pp. 147-168). https://doi.org/10.1016/B978-0-444-88195-3.50014-3
  17. Golledge, R. G. (1991). Cognition of physical and built environment. In T. Garling & G. W. Evans (Eds.), Environment, Cognition, and Action: An Integrated Approach. New York, NY: Oxford University Press.
  18. Golledge, R. G. (1999). Human wayfinding and cognitive maps. In R. G. Golledge (Ed.), Wayfinding behavior (p. 9). Baltimore: The Johns Hopkins University Press.
  19. Harman, G. (1976). Practical Reasoning. The Review of Metaphysics, 29(3), 431-463. Retrieved from https://www.jstor.org/stable/20126812
  20. Hassler, S. (2016). Marvin Minsky and the pursuit of machine understanding - Making machines-and people-think [Spectral Lines]. IEEE Spectrum, 53(3), 7- 7. https://doi.org/10.1109/MSPEC.2016.7420381
  21. Hayes-Roth, B. (1995). An architecture for adaptive intelligent systems. Artificial Intelligence, 72(1-2), 329-365. https://doi.org/10.1016/0004-3702(94)00004-K
  22. Heath, B. L., & Hill, R. R. (2008). The early history of agent-based modeling. IIE Annual Conference.Proceedings, 971-976. Retrieved from https://search.proquest.com/docview/192465049?accountid=12378 IMO. (2009). SOLAS: Consolidated Edition (5th ed.). London, UK: International Maritime Organization.
  23. Kahneman, D., Slovic, P., & Tversky, A. (Eds.). (1982). Judgment under Uncertainty: Heuristics and Biases. Cambridge, United Kingdom: Cambridge University Press.
  24. Kay, A. (1984). Computer software. Scientific American, 251(3), 53-59.
  25. Khan, S. A. (1989). Whether man is capable of free thinking. In Freedom of Thought in Islam. Karachi, Pakistan: Royal Book Company.
  26. Klein, D., Marx, J., & Fischcach, K. (2018). Agent-Based Modeling in Social Science, History, and Philosophy. An Introduction. Historical Social Research, 43(1).
  27. Klein, G. (1998). Sources of Power. Cambridge, MA: MIT Press.
  28. Klein, G. (2004). The Power of Intuition. Doubleday.
  29. Klein, G. (2008). Naturalistic Decision Making. Human Factors: The Journal of the Human Factors and Ergonomics Society, 50(3), 456-460. https://doi.org/10.1518/001872008X288385
  30. Lucas, J. R. (1961). Minds, machines and Gödel. Philosophy, 36(137), 112-127. Retrieved from http://www.jstor.org/stable/3749270
  31. Lynch, K. (1960). The Image of the City. Cambridge, MA: MIT Press.
  32. MacEachren, A. M. (1992). Application of environmental learning theory to spatial knowledge acquisition from maps. Annals of the Association of American Geographers, 82(2), 245-274.
  33. Mackintosh, N. (1973). Stimulus selection: Learning to ignore stimuli that predict no change in reinforcement. In R. A. Hinde & J. S. Hinder (Eds.), Constraints on Learning (pp. 75-96). London: Academic Press.
  34. Maes, P. (1995). Artificial life meets entertainment: lifelike autonomous agents. Communications of the ACM, 38(11), 108-114. https://doi.org/10.1145/219717.219808
  35. Man, L. (2015). An Agent-based Approach to Automated Merge 4D Arrival Trajectories in Busy Terminal Maneuvering Area. Procedia Engineering, 99, 233-243. https://doi.org/10.1016/j.proeng.2014.12.531
  36. McCarthy, J. (1979). Ascribing mental qualities to machines (Memo No. 326). Palo Alto, CA.
  37. McKinlay, R. (2016). Technology: Use or lose our navigation skills. Nature, 531(7596), 573-575.
  38. Minsky, M. (1988). The society of mind. New York, NY: Simon & Schuster.
  39. Minsky, M. (1991). Conscious machines. Machinery of Consciousness. Proceedings of the National Research Council of Canada, 75th Anniversary Symposium on Science in Society, June 1991. NRC.
  40. Moore, G. T., & Golledge, R. G. (Eds.). (1976). Environmental knowing: Theories, research, and methods. Stroudsburg, Pennsylvania: Dowden, Hutchinson & Ross, Inc.
  41. Nwana, H. S. (1996). Software agents: an overview. The Knowledge Engineering Review, 11(3), 205-244. https://doi.org/10.1017/S026988890000789X
  42. Parsons, S., & Wooldridge, M. (2002). Game Theory and Decision Theory in Multi- Agent Systems. Autonomous Agents and Multi-Agent Systems, 5(3), 243-254. https://doi.org/10.1023/A:1015575522401
  43. Passini, R. (1977). Wayfinding : a study of spatial problem solving with implications for physical design. Pennsylvania State University, Pennsylvania, USA.
  44. Penrose, R. (1989). The emperor's new mind: Concerning computers, minds, and the laws of Physics. Oxford University Press.
  45. Penrose, R. (1991). The emperor's new mind. RSA Journal, 139(5420), 506-514. Retrieved from http://www.jstor.org/stable/41378098
  46. Rao, A. S., & Georgeff, M. P. (1995). BDI Agents: From theory to practice. In V. Lesser & L. Gasser (Eds.), Proceedings of the First International Conference on Multi-Agent Systems (ICMAS-95) (pp. 312-319). Retrieved from 0262621029
  47. Reason, J. (1990). Human error. Cambridge: Cambridge University Press.
  48. Ross, S. A. (1973). The economic theory of agency: the principal's problem. American Economic Review, 63(2), 134-139.
  49. Russell, S. J., & Subramanian, D. (1995). Provably Bounded-Optimal Agents. Journal of Artificial Intelligence Research, 2, 575-609. https://doi.org/10.1613/jair.133
  50. Selfridge, O. G. (1988). Pandemonium: a paradigm for learning. In Neurocomputing: foundations of research (pp. 115-122). Cambridge, MA: MIT Press.
  51. Shoham, Y. (1993). Agent-oriented programming. Artificial Intelligence, 60(1), 51- 92. https://doi.org/10.1016/0004-3702(93)90034-9
  52. Shoham, Y., & Leyton-Brown, K. (2009). Multiagent Systems: Algorithmic, Game- Theoretic, and Logical Foundations. Cambridge, MA: Cambridge University Press.
  53. Smith, D. C., Cypher, A., & Spohrer, J. (1994). KidSim: programming agents without a programming language. Communications of the ACM, 37(7), 54-67. https://doi.org/10.1145/176789.176795
  54. Smith, J. (2015). The effect of virtual environment training on participant competence and learning in offshore emergency egress scenarios [Master thesis]. Memorial University of Newfoundland, St. John's, NL, Canada. Retrieved from: https://research.library.mun.ca/8401/1/thesis.pdf
  55. Tolman, E. C. (1948). Cognitive maps in rats and men. The Psychological Review, 55(4).
  56. Tuan, Y.-F. (1977). Space and place: The perspective of experience. Minneapolis: University of Minnesota Press.
  57. Turing, A. M. (1947). Lecture to the L.M.S. [London Mathematical Society] Feb. 20, 1947. London, UK: This record is held by Cambridge University: King's College Archive Centre.
  58. Turing, A. M. (1950). I.-Computing machinery and intelligence. Mind, LIX(236), 433-460. https://doi.org/10.1093/mind/LIX.236.433
  59. Tversky, A., & Kahneman, D. (1974). Judgment under Uncertainty: Heuristics and Biases. Science, 185(4157), 1124-1131. https://doi.org/10.1126/science.185.4157.1124
  60. von Neumann, J., & Morgenstern, O. (1944). Theory of Games and Economic Behavior. Princeton, NJ: Princeton University Press.
  61. Weinspach, P. M., Gundlach, J., Klingelhofer, H. G., Ries, R., & Schneider, U. (1997). Analysis of the Fire on April 11th, 1996; Recommendations and Consequences for Dusseldorf Rhein-Ruhr-Airport. Staatskanzlei Nordrhein-Wstfalen, Mannesmannufer, 1.
  62. Wooldridge, M. (2009). An Introduction to MultiAgent Systems. West Sussex, United Kingdom: John Wiley & Sons Ltd.
  63. Wooldridge, M., & Jennings, N. R. (1995). Agent theories, architectures and languages: a survey. In M. J. Wooldridge & N. R. Jennings (Eds.), Intelligent Agents. https://doi.org/10.1007/3-540-58855-8
  64. Yurkiewicz, I. R., & Tsao, J. W. (2012). Book Review: Why people get lost: the psychology and neuroscience of spatial cognition by Paul A. Dudchenko. Journal of the Neurological Sciences, 313(1-2), 197-198.
  65. Zsambok, C. E. (1997). Naturalistic Decision Making: Where are we now? In C. E. Zsambok & G. Klein (Eds.), Naturalistic Decision Making (pp. 3-16). Mahwah, New Jersey: Lawrence Erlbaum Associates, Publishers. References
  66. Ajmone Marsan, M. (1990). Stochastic Petri Nets. Springer.
  67. Ajmone Marsan, M., Conte, G., & Balbo, G. (1984). A Class of Generalized Stochastic Petri Nets for the Performance Evaluation of Multiprocessor Systems. ACM Trans. Comput. Syst., 2(2), 93-122. https://doi.org/10.1145/190.191
  68. Allen, G. L. (1999). Spatial abilities, cognitive maps and wayfinding: bases for individual differences in spatial cognition and behavior. In R. G. Golledge (Ed.), Wayfinding behavior (pp. 46-80). The John Hopkins University Press.
  69. Aziz, A. (2000). Model-checking continuous-time Markov chains. ACM Transactions on Computational Logic, 1(1), 162-170.
  70. Balbo, G., Chiola, G., & Bruell, S. C. (1992). An example of modeling and evaluation of a concurrent program using colored stochastic Petri nets: Lamport's fast mutual exclusion algorithm. IEEE Transactions on Parallel and Distributed Systems, 3(2), 221-240.
  71. Bause, F., & Kritzinger, P. S. (1996). Stochastic Petri Nets: An Introduction to the Theory. Verlag Viewweg.
  72. Beusmans, J. M., Aginsky, V., Harris, C. L., & Rensink, R. A. (1995). Analyzing situation awareness during wayfinding in a driving simulator. In D. J. Garland & M. R. Endsley (Eds.), Proceedings of the International Conference on Experimental Analysis and Measurement of Situation Awareness (pp. 245-251). Daytona Beach, Florida: Embry-Riddle Aeronautical University Press.
  73. Borowiec, S., & Lien, T. (2016, March). AlphaGo beats human Go champ in milestone for artificial intelligence. Retrieved from https://www.latimes.com/world/asia/la-fg-korea-alphago-20160312-story.html
  74. Buckland, M. (2004). Programming Game AI by Example. Jones & Bartlett Learning.
  75. Derdikman, D., & Moser, E. I. (2010). A manifold of spatial maps in the brain. Trends in Cognitive Science, 14(12).
  76. Dooley, B. J. (2017). Why AI with augmented and virtual reality will be the next big thing. Upside, 4th April.
  77. Dorigo, M., & Stutzle, T. (2004). Ant Colony Optimization. MIT Press.
  78. Eilam, D. (2014). Of mice and men: building blocks in cognitive mapping. Neuroscience and Biobehavioral Reviews, 47, 393-409.
  79. Endsley, M. R. (1995). Toward a theory of situation awareness in dynamic systems. Human Factors: The Journal of the Human Factors and Ergonomics Society, 37(1), 32-64.
  80. Febbraro, A. Di, Giglio, D., & Sacco, N. (2016). A deterministic and stochastic Petri net model for traffic-responsive signaling control in urban areas. IEEE Transactions on Intelligent Transportation Systems, 17(2), 510-524.
  81. Gale, N., Golledge, R. G., Pellegrino, J. W., & Doherty, S. (1990). The acquisition and integration of route knowledge in an unfamiliar neighborhood. Journal of Environmental Psychology, 10, 3-25.
  82. Ghahramani, S. (2005). Fundamentals of Probability with Stochastic Processes (3rd ed.). Pearson Prentice Hall.
  83. Gilmore, D., & Self, J. (1988). The application of machine learning to intelligent tutoring systems. In J. Self (Ed.), Artificial intelligence and human learning: intelligent computer-aided instruction.
  84. Golledge, R. G. (1977). Multidimensional analysis and environmental behavior and design. In I. Altman & J. F. Wohlwill (Eds.), Human behavior and environment: advances in theory and research. Heidelberg: Springer Berlin Heidelberg.
  85. Golledge, R. G. (1991). Cognition of physical and built environment. In T. Garling & G. W. Evans (Eds.), Environment, Cognition, and Action: An Integrated Approach. New York, NY: Oxford University Press.
  86. Golledge, R. G. (1993). Geographical perspectives on spatial cognition. In T. Garling & R. G. Golledge (Eds.), Behavior and Environment: Psychological and Geographical Approaches (pp. 16-46). Amsterdam: Elsevier Science Publishers B. V. Golledge, R. G. (1999). Human wayfinding and cognitive maps. In R. G. Golledge (Ed.), Wayfinding behavior (p. 9). Baltimore: The Johns Hopkins University Press.
  87. Gorton, I. (1993). Parallel program design using high-level Petri nets. Concurency and Computation: Practice and Experience, 5(2), 87-104.
  88. Grush, R. (2000). Self, world and space: the meaning and mechanisms of ego-and allocentric spatial representation. Brain and Mind, 1, 59-92.
  89. Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on System Science and Cybernetics, 4(2), 100-107.
  90. Hayden, S. (2015). NASA is creating a virtual reality mission to MARS, "The Mars 2030 experience." Retrieved from https://www.roadtovr.com/nasa-creating- virtual-reality-mission-mars-mars-2030-experience/
  91. Heiner, M., Herajy, M., Liu, F., Rohr, C., & Schwarick, M. (2012). Snoopy --a unifying Petri net tool. PETRI NETS 2012, June 2012, Lecture Notes in Computer Science, 7347, 398-407. Springer-Verlag.
  92. Heiner, M., Rohr, C., & Schwarick, M. (2013). MARCIE -Model checking And Reachability analysis done effiCIEntly. 389-399. Springer-Verlag.
  93. Jensen, K. (1981). Coloured Petri nets and the invariant-method. Theoretical Computer Science, 14, 317-336. https://doi.org/https://doi.org/10.1016/0304- 3975(81)90049-9
  94. Jensen, K. (1996). Colored Petri Nets (3rd ed.). Springer.
  95. Kang, S.-J., Kim, Y., & Kim, C.-H. (2010). Live path: adaptive agent navigation in the interactive virtual world. The Visual Computer, 26, 467-476.
  96. Klein, G. (2004). The Power of Intuition. Doubleday.
  97. Kyritsis, M., Gulliver, S. R., & Morar, S. (2014). Cognitive and environmental factors influencing the process of spatial knowledge acquisition within virtual reality environments. International Journal of Artificial Life Research, 4(1).
  98. Lehtonen, E., Sahlberg, H., Rovamo, E., & Summala, H. (2017). Learning game for training child bicyclists' situation awareness. Accident Analysis and Prevention, 105, 72-83. https://doi.org/http://dx.doi.org/10.1016/j.aap.2016.07.036
  99. Li, L., & Yokota, H. (2009). Application of Petri nets in bone remodeling. Gene Regulation and System Biology, 3, 105-114.
  100. Lynch, K. (1960). The Image of the City. Cambridge, MA: MIT Press.
  101. Maciel, P. R. M., Trivedi, K. S., Matias, R., & Kim, D. S. (2011). Dependability Modelling. In Performance and Dependability in Service Computing: Concepts, Techniques and Research Directions (pp. 53-97). IGI Global.
  102. Marwan, W., Rohr, C., & Heiner, M. (2012). Petri Nets in Snoopy: A unifying framework for the graphical display, computational modelling, and simulation of bacterial regulatory networks. In J. van Helden, A. Toussaint, & D. Thieffry (Eds.), Bacterial Molecular Networks. Methods in Molecular Biology (Methods and Protocols) (Vol. 804). Springer.
  103. McKinlay, R. (2016). Technology: Use or lose our navigation skills. Nature, 531(7596), 573-575.
  104. Mo, J. (2013). Performance modeling of communication networks with Markov chains. In J. Walrand (Ed.), Syntheis Lectures on Communication Networks # 5. Morgan & Claypool Publishers.
  105. Murata, T. (1989). Petri nets: Properties, analysis and applications. Proceedings of the IEEE, 77(4), 541-580.
  106. Musharraf, M., Khan, F., Veitch, B., McKonnin, S., & Imtiaz, S. (2013). Human reliability assessment during offshore emergency conditions. Safety Science, 59, 19-27.
  107. Norazahar, N., Khan, F., Veitch, B., & MacKinnon, S. (2016). Prioritizing safety critical human and organizational factors of EER systems of offshore installations in a harsh environment. Safety Science.
  108. Peterson, J. L. (1977). Petri nets. ACM Computing Surveys (CSUR), 9(3), 223-252.
  109. Petri, C. A. (1966). Kommunikation mit Automaten. Bonn: Institut für Instrumentelle Mathematik, Schriften des IIM Nr. 2; (English translation) (Vol. 1). Vol. 1. New York.
  110. Plank, M., Snider, J., Kaestner, E., Halgren, E., & Poizner, H. (2014). Neurocognitive stages of spatial cognitive mapping measured during free exploration of a large- scale virtual environment. Journal of Neurophysiology, 113, 740-753.
  111. Ramchurn, S. D., Huynh, T. D., Ikuno, Y., Flann, J., Wu, F., Moreau, L., … Roberts, S. J. (2016). A disaster response system based on human-agent collectives. Journal of Artificial Intelligence Research, 57, 661-708.
  112. Reason, J. (1990). Human error. Cambridge: Cambridge University Press.
  113. Smith, J. (2015). The effect of virtual environment training on participant competence and learning in offshore emergency egress scenarios [Master thesis]. Memorial University of Newfoundland, St. John's, NL, Canada. Retrieved from: https://research.library.mun.ca/8401/1/thesis.pdf
  114. Sud, A., Andersen, E., Curtis, S., Lin, M., & Manocha, D. (2007). Real-time path planning for virtual agents in dynamic environments. Proceedings of IEEE Virtual Reality, 91-98. https://doi.org/10.1109/VR.2007.352468
  115. Tolman, E. C. (1948). Cognitive maps in rats and men. The Psychological Review, 55(4).
  116. Trivedi, K. S. (2002). Probability and Statistics with Reliability, Queuing, and Computer Science Applications (2nd ed.). Wiley Interscience Publication.
  117. Wang, R. F., & Spelke, E. S. (2002). Human spatial representation: insights from animals. Trends in Cognitive Sciences, 6, 376-382.
  118. Yurkiewicz, I. R., & Tsao, J. W. (2012). Book Review: Why people get lost: the psychology and neuroscience of spatial cognition by Paul A. Dudchenko. Journal of the Neurological Sciences, 313(1-2), 197-198.
  119. Allen, G. L. (1999). Spatial abilities, cognitive maps and wayfinding: bases for individual differences in spatial cognition and behavior. In R. G. Golledge (Ed.), Wayfinding behavior (pp. 46-80). The John Hopkins University Press.
  120. Bause, F., & Kritzinger, P. S. (1996). Stochastic Petri Nets: An Introduction to the Theory. Verlag Viewweg.
  121. BBC, A. N. (2013, October). Nairobi siege: How the attack happened. Retrieved from https://www.bbc.com/news/world-africa-24189116
  122. Buckland, M. (2004). Programming Game AI by Example. Jones & Bartlett Learning.
  123. Caduff, D., & Timpf, S. (2005). The Landmark Spider: Representing Landmark Knowledge for Wayfinding Tasks. AAAI Spring Symposium -Technical Report, 30-35.
  124. Cullen, L. W. D. (1993). The public inquiry into the Piper Alpha disaster. Drilling Contractor (United States), 49:4.
  125. Danial, S. N., Khan, F., & Veitch, B. (2018). A Generalized Stochastic Petri Net model of route learning for emergency egress situations. Engineering Applications of Artificial Intelligence, 72, 170-182. https://doi.org/10.1016/j.engappai.2018.03.024
  126. Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1(1), 269-271. https://doi.org/10.1007/BF01386390
  127. Eilam, D. (2014). Of mice and men: building blocks in cognitive mapping. Neuroscience and Biobehavioral Reviews, 47, 393-409.
  128. Emo Nax, B. (2014). Real-world wayfinding experiments: Individual preferences, decisions and the space syntax approach at street corners. Retrieved from http://discovery.ucl.ac.uk/1452725/
  129. Filippidis, L., Galea, E. R., Lawrence, P., & Gwynne, S. (2001). Visibility Catchment Area of exits and signs. InterFlam 2001: 9 Th International Fire Science & Engineering Conference, 1529-1534. Retrieved from https://fseg.gre.ac.uk/fire/visibility_catchment_area.html
  130. Gale, N., Golledge, R. G., Pellegrino, J. W., & Doherty, S. (1990). The acquisition and integration of route knowledge in an unfamiliar neighborhood. Journal of Environmental Psychology, 10, 3-25.
  131. Galea, E. R. (2003). Pedestrian and Evacuation Dynamics. Proceedings of the 2nd International Conference on Pedestrian and Evacuation Dynamics, Greenwich, UK, 20-22 August 2003. London, UK: CMS Press.
  132. Galea, E. R., Xie, H., & Lawrence, P. (2014). Experimental and Survey Studies on the Effectiveness of Dynamic Signage Systems. Fire Safety Science, 11, 1129- 1143. https://doi.org/10.3801/IAFSS.FSS.11-1129
  133. Goldschmidt, D., Manoonpong, P., & Dasgupta, S. (2017). A Neurocomputational Model of Goal-Directed Navigation in Insect-Inspired Artificial Agents. Frontiers in Neurorobotics, 11, 20. https://doi.org/10.3389/fnbot.2017.00020
  134. Golledge, R. G. (1999a). Human wayfinding and cognitive maps. In R. G. Golledge (Ed.), Wayfinding behavior (p. 9). Baltimore: The Johns Hopkins University Press.
  135. Golledge, R. G. (1999b). Wayfinding Behavior: Cognitive Mapping and Other Spatial Processes. In Psycoloquy (Vol. 10). Baltimore: The John Hopkins University Press.
  136. Götze, J., & Boye, J. (2016). Learning landmark salience models from users' route instructions. J. Locat. Based Serv., 10(1), 47-63. https://doi.org/10.1080/17489725.2016.1172739
  137. Gruszka, A., Hampshire, A., & Owen, A. M. (2010). Learned Irrelevance Revisited: Pathology-Based Individual Differences, Normal Variation and Neural Correlates. In A. Gruszka, G. Matthews, & B. Szymura (Eds.), Handbook of Individual Differences in Cognition: Attention, Memory, and Executive Control (pp. 127-144). https://doi.org/10.1007/978-1-4419-1210-7_8
  138. Heiner, M., Herajy, M., Liu, F., Rohr, C., & Schwarick, M. (2012). Snoopy --a unifying Petri net tool. PETRI NETS 2012, June 2012, Lecture Notes in Computer Science, 7347, 398-407. Springer-Verlag.
  139. IMO. (2009). SOLAS: Consolidated Edition (5th ed.). London, UK: International Maritime Organization.
  140. Koutamanis, A. (1995). Multilevel Analysis of Fire Escape Routes in a Virtual Environment.
  141. Kristiansen, S. (2005). Maritime Transportation: Safety Management and Risk Analysis. Amsterdam: Elsevier Butterworth-Heinemann.
  142. Kumar, J. S., & Bhuvaneswari, P. (2012). Analysis of Electroencephalography (EEG) Signals and Its Categorization-A Study. Procedia Engineering, 38, 2525-2536. https://doi.org/https://doi.org/10.1016/j.proeng.2012.06.298
  143. Lee, S. A., Shusterman, A., & Spelke, E. S. (2006). Reorientation and Landmark- Guided Search by Young Children: Evidence for Two Systems. Psychological Science, 17:7, 577-582.
  144. Lynch, K. (1960). The Image of the City. Cambridge, MA: MIT Press.
  145. Mackintosh, N. (1973). Stimulus selection: Learning to ignore stimuli that predict no change in reinforcement. In R. A. Hinde & J. S. Hinder (Eds.), Constraints on Learning (pp. 75-96). London: Academic Press.
  146. McKinlay, R. (2016). Technology: Use or lose our navigation skills. Nature, 531(7596), 573-575.
  147. Muppala, J. K., & Trivedi, K. S. (1990). GSPN Models: Sensitivity analysis and applications. Proceedings of the 28th Annual Southeast Regional Conference, Greenville, South Caroline. April 18-20, 1990. Greenville, South Carolina: Association for Computing Machinery.
  148. Nys, M., Gyselinck, V., Orriols, E., & Hickmann, M. (2015). Landmark and route knowledge in children's spatial representation of a virtual environment. Frontiers in Psychology, 5, 1-15. https://doi.org/10.3389/fpsyg.2014.01522
  149. OSHA. (2003). Emergency-exit-routes-factsheet. Retrieved from https://www.osha.gov/OshDoc/data_General_Facts/emergency-exit-routes- factsheet.pdf
  150. Passini, R. (1977). Wayfinding : a study of spatial problem solving with implications for physical design. Pennsylvania State University, Pennsylvania, USA.
  151. Reason, J. (1990). Human error. Cambridge: Cambridge University Press.
  152. Sedgewick, R., & Wayne, K. (2011). Algorithms (4th ed.). Upper Saddle River, NJ, USA: Addison-Wesley.
  153. Sharma, G., Kaushal, Y., Chandra, S., Singh, V., Mittal, A. P., & Dutt, V. (2017). Influence of Landmarks on Wayfinding and Brain Connectivity in Immersive Virtual Reality Environment. Frontiers in Psychology, 8, 1220. https://doi.org/10.3389/fpsyg.2017.01220
  154. Smith, J. (2015). The effect of virtual environment training on participant competence and learning in offshore emergency egress scenarios [Master thesis]. Memorial University of Newfoundland, St. John's, NL, Canada. Retrieved from: https://research.library.mun.ca/8401/1/thesis.pdf University of Greenwich, F. S. E. G. (2017). EXODUS capabilities. Retrieved from https://fseg.gre.ac.uk/exodus/exodus_products.html
  155. Va ndenberg, A. E. (2016). Human Wayfinding: Integration of Mind and Body. In R. H. Hunter, L. A. Anderson, & B. L. Belza (Eds.), Community Wayfinding: Pathways to Understanding (pp. 17-32). https://doi.org/10.1007/978-3-319- 31072-5_2
  156. Waller, D., & Lippa, Y. (2007). Landmarks as beacons and associative cues: Their role in route learning. Memory & Cognition, 35(5), 910-924. https://doi.org/10.3758/BF03193465
  157. Weinspach, P. M., Gundlach, J., Klingelhofer, H. G., Ries, R., & Schneider, U. (1997). Analysis of the Fire on April 11th, 1996; Recommendations and Consequences for Dusseldorf Rhein-Ruhr-Airport. Staatskanzlei Nordrhein-Wstfalen, Mannesmannufer, 1.
  158. Xie, H., Filippidis, L., Galea, E. R., Blackshields, D., & Lawrence, P. J. (2012). Experimental analysis of the effectiveness of emergency signage and its implementation in evacuation simulation. Fire and Materials, 36(5-6), 367-382. https://doi.org/10.1002/fam.1095
  159. # Evidence Empirical result Model output probability
  160. L(P1G1, GPA, 0)
  161. R(P1G1, GPA, 0)
  162. 0.91 HITR(P1G1, MSH, 0) HES(P1G1, FIRE, 0) 0.92
  163. BST(P1G1, GPA, 0) HES(P1G1, FIRE, 1) 0.74
  164. HITR(P1G1, MSH, 1) HES(P1G1, EVAC,1) 0.16
  165. ST(P1G1, SMK_MSHA, 1) HES(P1G1, EVAC,0) 0.12
  166. ST(P1G1, SMK_STAI, 1) HSES(P1G1) 0.99 ST(P1G1, SMK_VENT, 1) R(P1G1, PAPA,1)
  167. FPA(P1G1, PA_GPA, 0)
  168. L(P1G1, PAPA, 1)
  169. BST(P1G1, PAPA, 1)
  170. HFO(P1G1, PA_PAPA, 1) FPA(P1G1, PA_PAPA, 1) HITR(P1G1, LFB, 1)
  171. L(P2G1, GPA, 0)
  172. R(P2G1, GPA, 0)
  173. 0.87 HITR(P2G1, MSH, 0) HES(P2G1, FIRE,0)
  174. 0.94 BST(P2G1, GPA, 0) HES(P2G1, FIRE, 1) 0.29
  175. ST(P2G1, SMK_VENT, 0)
  176. R(P2G1, PAPA, 1)
  177. 0.92 HFO(P2G1, PA_GPA, 0) HES(P2G1, EVAC, 1)
  178. 0.98 FPA(P2G1, PA_GPA, 0) HES(P2G1,EVAC,0)
  179. 0.07 L(P2G1, PAPA, 1) HSES(P2G1) 0.98 HFO(P2G1, PA_PAPA, 1)
  180. FPA(P2G1, PA_PAPA, 1)
  181. BST(P2G1, PAPA, 1)
  182. HITR(P2G1, LFB, 1)
  183. L(P3G1, GPA, 0) R(P3G1, GPA, 0)
  184. 0.49 HITR(P3G1,MSH, 0) HES(P3G1, FIRE, 0) 0.44
  185. BST(P3G1, GPA, 0) HES(P3G1, FIRE, 1) 0.15
  186. ST(P3G1, SMK_VENT, 0)
  187. R(P3G1, PAPA, 1)
  188. 0.93 HFO(P3G1,PA_GPA, 0) HES(P3G1, EVAC,1)
  189. 0.99 FPA(P3G1, PA_GPA, 0) HES(P3G1,EVAC,0)
  190. 0.24 L(P3G1, PAPA, 1) HSES(P3G1) 0.90 HFO(P3G1, PA_PAPA, 1)
  191. Akman, V., & Surav, M. (1996). Steps toward formalizing Context. AI Magzine, 17(3). https://doi.org/https://doi.org/10.1609/aimag.v17i3.1231
  192. Alchemy. (2012). Alchemy: A software for statistical relational learning and probabilistic logic inference based on Markov logic representation. Washington DC. Barwise, J. (1981). Scenes and Other Situations. The Journal of Philosophy, 78(7), 369. https://doi.org/10.2307/2026481
  193. Barwise, J., & Perry, J. (1980). The Situation Underground. California: Stanford Cognitive Science Group 1980, Section D.
  194. Barwise, J., & Perry, J. (1983). Situations and attitudes. Cambridge, MA: MIT Press.
  195. Bosse, T., & Mogles, N. (2014). Spread of situation awareness in a group: Population- based vs. agent-based modelling. Proceedings -2014 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology - Workshops, WI-IAT 2014, 3, 1117-1124. https://doi.org/10.1109/WI-IAT.2014.169
  196. Bratman, M. (1987). Intention, plans, and practical reason. Cambridge, MA: Harward University Press.
  197. Chowdhury, S. (2016). Optimization and Business Improvement: Studies in Upstream Oil and Gas Industry. New Jersey: Wiley.
  198. Cornfield, J., Haenszel, W., Hammond, E. C., Lilienfeld, A. M., Shimkin, M. B., & Wynder, E. L. (2009). Smoking and lung cancer: Recent evidence and a discussion of some questions. International Journal of Epidemiology, 38(5), 1175-1191. https://doi.org/10.1093/ije/dyp289
  199. Cullen, L. W. D. (1993). The public inquiry into the Piper Alpha disaster. Drilling Contractor (United States), 49:4.
  200. Danial, S. N., Khan, F., & Veitch, B. (2018). A Generalized Stochastic Petri Net model of route learning for emergency egress situations. Engineering Applications of Artificial Intelligence, 72, 170-182. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S0952197618300733
  201. Danial, S. N., Smith, J., Khan, F., & Veitch, B. (2019). Human-Like Sequential Learning of Escape Routes for Virtual Reality Agents. Fire Technology, 55(3), 1057-1083. https://doi.org/10.1007/s10694-019-00819-7
  202. Devlin, K. J. (1991a). Logic and Information. Cambridge: Cambridge University Press.
  203. Devlin, K. J. (1991b). Situations as Mathematical Abstractions. Situation Theory and Its Applications Vol. 1, 25-39.
  204. Domingos, P., & Lowd, D. (2009). Markov Logic: An interface layer for Artificial Intelligence. In T. Brachman, R. J.;Dietterich (Ed.), Synthesis Lectures on Artificial Intelligence and Machine Learning. Seatle: Morgan & Claypool Publishers.
  205. Domingos, P., & Richardson, M. (2007). Markov Logic: A Unifying Framework for Statistical Relational Learning. In B. Getoor, L.;Taskar (Ed.), Introduction to Statistical Relational Learning. Cambridge, MA: MIT Press.
  206. Endsley, M. (1988). Design and Evaluation for Situation Awareness Enhancement. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 32. https://doi.org/10.1177/154193128803200221
  207. ExxonMobil. (2010). OIMS: System 10-2 Emergency Preparedness and Response. Retrieved from https://www.cnsopb.ns.ca/sites/default/files/inline/12450_so41877.1_spill_resp onse_soei_0.pdf
  208. Gayathri, K. S., Easwarakumar, K. S., & Elias, S. (2017). Probabilistic ontology based activity recognition in smart homes using Markov Logic Network. Knowledge- Based Systems, 121, 173-184. https://doi.org/10.1016/j.knosys.2017.01.025
  209. Gayathri, K. S., Elias, S., & Shivashankar, S. (2014). An Ontology and Pattern Clustering Approach for Activity Recognition in Smart Environments. https://doi.org/10.1007/978-81-322-1771-8_72
  210. Gore, J., Flin, R., Stanton, N., & Wong, B. L. W. (2015). Applications for naturalistic decision-making. Journal of Occupational and Organizational Psychology, 88(2), 223-230. https://doi.org/10.1111/joop.12121
  211. Grimmett, G. (2010). Probability on Graphs: Random Processes on Graphs and Lattices. Cambridge: Cambridge University Press.
  212. Halpern, J. Y. (2003). Reasoning about uncertainty. Cambridge, MA: MIT Press.
  213. Hu, Y., Li, R., & Zhang, Y. (2018). Predicting pilot behavior during midair encounters using recognition primed decision model. Information Sciences, 422, 377-395. https://doi.org/10.1016/j.ins.2017.09.035
  214. Isham, V. (1981). An Introduction to Spatial Point Processes and Markov Random Fields. International Statistical Review / Revue Internationale de Statistique, 49(1), 21. https://doi.org/10.2307/1403035
  215. Jain, D. (2011). Knowledge Engineering with Markov Logic Networks: A review. In G. Beierle, C.; Kern-Isberner (Ed.), Proceedings of Evolving Knowledge in Theory and Applications. 3rd Workshop on Dynamics of Knowledge and Belief (DKB-2011) at the 34th Annual German Conference on Artificial Intelligence, KI-2011, vol. 361. (pp. 16-30). Berlin, Germany: Fakultät für Mathematik und Informatik, FernUniversität in Hagen.
  216. Johnson, A. W., Duda, K. R., Sheridan, T. B., & Oman, C. M. (2017). A Closed-Loop Model of Operator Visual Attention, Situation Awareness, and Performance Across Automation Mode Transitions. Human Factors: The Journal of the Human Factors and Ergonomics Society, 59(2), 229-241. https://doi.org/10.1177/0018720816665759
  217. Khan, B., Khan, F., Veitch, B., & Yang, M. (2018). An operational risk analysis tool to analyze marine transportation in Arctic waters. Reliability Engineering & System Safety, 169, 485-502. https://doi.org/10.1016/j.ress.2017.09.014
  218. Kindermann, R., & Snell, J. L. (1980). Markov random fields and their applications. In Science (Vol. 1). https://doi.org/10.1109/TVCG.2009.208
  219. Kingston, C., Nurse, J. R. C., Agrafiotis, I., & Milich, A. B. (2018). Using semantic clustering to support situation awareness on Twitter: the case of world views. Human-Centric Computing and Information Sciences, 8(1), 22. https://doi.org/10.1186/s13673-018-0145-6
  220. Klein, G. A. (1998). Sources of Power. Cambridge, MA: MIT Press.
  221. Kokar, M. M., Matheus, C. J., & Baclawski, K. (2009). Ontology-based situation awareness. Information Fusion, 10(1), 83-98. https://doi.org/10.1016/j.inffus.2007.01.004
  222. Kokar, M. M., Shin, S., Ulicny, B., & Moskal, J. (2014). Inferring relations and individuals relevant to a situation: An example. 2014 IEEE International Inter- Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision Support (CogSIMA), 18-194. https://doi.org/10.1109/CogSIMA.2014.6816561
  223. Liu, F., Deng, D., & Li, P. (2017). Dynamic Context-Aware Event Recognition Based on Markov Logic Networks. Sensors, 17(3), 491. https://doi.org/10.3390/s17030491
  224. Llinas, J., Bowman, C., Rogova, G., Steinberg, A., Waltz, E., & White, F. (2004). Revisiting the JDL Data Fusion Model II (2004). In P. Svensson & J. Schubert (Eds.), Proceedings of the Seventh International Conference on Information Fusion (FUSION 2004), June 28-July 1, 2004. Stockholm, Sweden.
  225. Luck, M., & Aylett, R. (2000). Applying artificial intelligence to virtual reality: Intelligent virtual environments. Applied Artificial Intelligence, 14(1), 3-32. https://doi.org/10.1080/088395100117142
  226. Malizia, A., Onorati, T., Diaz, P., Aedo, I., & Astorga-Paliza, F. (2010). SEMA4A: An ontology for emergency notification systems accessibility. Expert Systems with Applications, 37(4), 3380-3391. https://doi.org/10.1016/j.eswa.2009.10.010
  227. Musharraf, M., Smith, J., Khan, F., Veitch, B., & MacKinnon, S. (2018). Incorporating individual differences in human reliability analysis: An extension to the virtual experimental technique. Safety Science, 107, 216-223. https://doi.org/10.1016/j.ssci.2017.07.010
  228. Naderpour, M., Lu, J., & Zhang, G. (2014). An intelligent situation awareness support system for safety-critical environments. Decision Support Systems, 59, 325-340. https://doi.org/10.1016/j.dss.2014.01.004
  229. Nakanishi, H., Shimizu, S., & Isbister, K. (2005). Sensitizing social agents for virtual training. Applied Artificial Intelligence, 19(3-4), 341-361. https://doi.org/10.1080/08839510590910192
  230. Nasar, Z., & Jaffry, S. W. (2018). Trust-Based Situation Awareness: Comparative Analysis of Agent-Based and Population-Based Modeling. Complexity, 2018, 1- 17. https://doi.org/10.1155/2018/9540726
  231. Norazahar, N., Smith, J., Khan, F., & Veitch, B. (2018). The use of a virtual environment in managing risks associated with human responses in emergency situations on offshore installations. Ocean Engineering, 147, 621-628. https://doi.org/10.1016/j.oceaneng.2017.09.044
  232. Nowroozi, A., Shiri, M. E., Aslanian, A., & Lucas, C. (2012). A general computational recognition primed decision model with multi-agent rescue simulation benchmark. Information Sciences, 187, 52-71. https://doi.org/10.1016/j.ins.2011.09.039
  233. Nwiabu, N., Allison, I., Holt, P., Lowit, P., & Oyeneyin, B. (2012). Case-based situation awareness. 2012 IEEE International Multi-Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision Support. 6-8 March 2012, 22-29. https://doi.org/10.1109/CogSIMA.2012.6188388
  234. Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inferences. San Mateo, CA: Morgan Kaufmann.
  235. Poon, H., & Domingos, P. (2006). Sound and Efficient Inference with Probabilistic and Deterministic Dependencies. Proceedings of the 21st National Conference on Artificial Intelligence -Volume 1, 458-463. Retrieved from http://dl.acm.org/citation.cfm?id=1597538.1597612
  236. Posner, M. I., Nissen, M. J., & Klein, R. M. (1976). Visual dominance: An information-processing account of its origins and significance. Psychological Review, 83(2), 157-171. https://doi.org/10.1037/0033-295X.83.2.157
  237. Preston, C. J. (1974). Gibbs States on Countable Sets. Cambridge: Cambridge University Press.
  238. Proulx, G. (2007). Response to fire alarms. Fire Protection Engineering, 33, 8-14. Retrieved from http://www.cfaa.ca/Files/flash/CODES/FIRE ALARM ARTICLES FOR THE AHJ/Fire Alarm Response.pdf
  239. Raedt, L. De, Kersting, K., Natarajan, S., & Poole, D. (2016). Statistical Relational Artificial Intelligence: Logic, Probability, and Computation. In Synthesis Lectures on Artificial Intelligence and Machine Learning (Vol. 10). https://doi.org/10.2200/S00692ED1V01Y201601AIM032
  240. Reason, J. (1990). Human error. Cambridge: Cambridge University Press.
  241. Récopé, M., Fache, H., Beaujouan, J., Coutarel, F., & Rix-Lièvre, G. (2019). A study of the individual activity of professional volleyball players: Situation assessment and sensemaking under time pressure. Applied Ergonomics, 80, 226-237. https://doi.org/10.1016/j.apergo.2018.07.003
  242. Singla, P., & Domingos, P. (2005). Discriminative Training of Markov Logic Networks. Proceedings of the 20th National Conference on Artificial Intelligence - Volume 2, 868-873. Retrieved from http://dl.acm.org/citation.cfm?id=1619410.1619472
  243. Sinnett, S., Spence, C., & Soto-Faraco, S. (2007). Visual dominance and attention: The Colavita effect revisited. Perception & Psychophysics, 69(5), 673-686. https://doi.org/10.3758/BF03193770
  244. Smith, J. (2015). The effect of virtual environment training on participant competence and learning in offshore emergency egress scenarios [Master thesis]. Memorial University of Newfoundland, St. John's, NL, Canada. Retrieved from: https://research.library.mun.ca/8401/1/thesis.pdf Smoking and Health: Joint Report of the Study Group on Smoking and Health. (1957). Science, 125(3258), 1129-1133. https://doi.org/10.1126/science.125.3258.1129
  245. Sneddon, A., Mearns, K., & Flin, R. (2013). Stress, fatigue, situation awareness and safety in offshore drilling crews. Safety Science, 56, 80-88. https://doi.org/10.1016/j.ssci.2012.05.027
  246. Snidaro, L., Visentini, I., & Bryan, K. (2015). Fusing uncertain knowledge and evidence for maritime situational awareness via Markov Logic Networks. Information Fusion, 21, 159-172. https://doi.org/10.1016/j.inffus.2013.03.004
  247. Snidaro, L., Visentini, I., Bryan, K., & Foresti, G. L. (2012). Markov Logic Networks for context integration and situation assessment in maritime domain. 2012 15th International Conference on Information Fusion, 1534-1539.
  248. Sowa, J. F. (1984). Conceptual Structures: Information Processing in Mind and Machine. Reading, MA: Addison-Wesley.
  249. Sowa, J. F. (2000). Knowledge Representation: Logical, Philosophical and Computational Foundations. Pacific Grove, CA: Brooks/Cole Thomson Learning.
  250. Spouge, J. (1999). A Guide to Quantitative Risk Assessment for Offshore Installations. Aberdeen, UK: CMPT Publication.
  251. Szczerbak, M., Bouabdallah, A., Toutain, F., & Bonnin, J.-M. (2013). A Model to Compare and Manipulate Situations Represented as Semantically Labeled Graphs. In H. D. Pfeiffer, D. I. Ignatov, J. Poelmans, & N. Gadiraju (Eds.), Conceptual Structures for STEM Research and Education (pp. 44-57). Berlin, Heidelberg: Springer Berlin Heidelberg.
  252. Thilakarathne, D. J. (2015). Modelling of situation awareness with perception, attention, and prior and retrospective awareness. Biologically Inspired Cognitive Architectures, 12, 77-104. https://doi.org/10.1016/j.bica.2015.04.010
  253. Tong, D., & Canter, D. (1985). The decision to evacuate: a study of the motivations which contribute to evacuation in the event of fire. Fire Safety Journal, 9(3), 257-265. https://doi.org/10.1016/0379-7112(85)90036-0
  254. Tutolo, D. (1979). Attention: Necessary Aspect of Listening. Language Arts, 56(1), 34-37. Retrieved from http://www.jstor.org/stable/41404756
  255. Tversky, A., & Kahneman, D. (1974). Judgment under Uncertainty: Heuristics and Biases. Science, 185(4157), 1124-1131. https://doi.org/10.1126/science.185.4157.1124
  256. Wankhede, A. (2017, September). Different Types of Alarms on Ships. Marine Insight. Retrieved from https://www.marineinsight.com/marine-safety/different- types-of-alarms-on-ship/
  257. Winerman, L. (2004). Fighting fire with psychology. Monitor on Pscyhology, 35(8), 28. Retrieved from https://www.apa.org/monitor/sep04/fighting
  258. Xu, G., Cao, Y., Ren, Y., Li, X., & Feng, Z. (2017). Network Security Situation Awareness Based on Semantic Ontology and User-Defined Rules for Internet of Things. IEEE Access, 5, 21046-21056. https://doi.org/10.1109/ACCESS.2017.2734681
  259. Yang, C., Wang, D., Zeng, Y., Yue, Y., & Siritanawan, P. (2019). Knowledge-based multimodal information fusion for role recognition and situation assessment by using mobile robot. Information Fusion, 50, 126-138. https://doi.org/10.1016/j.inffus.2018.10.007
  260. References Alchemy. (2012). Alchemy: A software for statistical relational learning and probabilistic logic inference based on Markov logic representation. Washington DC. Barwise, J., & Perry, J. (1983). Situations and attitudes. Cambridge, MA: MIT Press.
  261. Blakemore, S.-J., & Decety, J. (2001). From the perception of action to the understanding of intention. Nature Reviews Neuroscience, 2(8), 561-567. https://doi.org/10.1038/35086023
  262. Bratman, M. (1987). Intention, plans, and practical reason. Cambridge, MA: Harward University Press.
  263. Buckland, M. (2004). Programming Game AI by Example. Jones & Bartlett Learning.
  264. Canellas, M. C., & Feigh, K. M. (2016). Toward Simple Representative Mathematical Models of Naturalistic Decision Making Through Fast-and-Frugal Heuristics. Journal of Cognitive Engineering and Decision Making, 10(3), 255-267. https://doi.org/10.1177/1555343416656103
  265. Chase, W. G., & Simon, H. A. (1973). THE MIND'S EYE IN CHESS. In Visual Information Processing (pp. 215-281). https://doi.org/10.1016/B978-0-12- 170150-5.50011-1
  266. Chowdhury, S. (2016). Optimization and Business Improvement: Studies in Upstream Oil and Gas Industry. New Jersey: Wiley.
  267. Crowl, D. A., & Louvar, J. F. (2011). Chemical Process Safety: Fundamentals with applications (3rd ed.). Boston: Pearson Education, Inc.
  268. Danial, S. N., Khan, F., & Veitch, B. (2018). A Generalized Stochastic Petri Net model of route learning for emergency egress situations. Engineering Applications of Artificial Intelligence, 72, 170-182. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S0952197618300733
  269. Danial, S. N., Smith, J., Khan, F., & Veitch, B. (2019). Human-Like Sequential Learning of Escape Routes for Virtual Reality Agents. Fire Technology, 55(3), 1057-1083. https://doi.org/10.1007/s10694-019-00819-7
  270. Dastani, M., & Testerink, B. (2014). From Multi-Agent Programming to Object Oriented Design Patterns. In F. Dalpiaz, J. Dix, & M. B. van Riemsdijk (Eds.), Engineering Multi-Agent Systems. EMAS 2014. Lecture Notes in Computer Science, Volume 8758. (pp. 204-226). https://doi.org/10.1007/978-3-319-14484- 9_11
  271. Davies, M., & Stone, T. (Eds.). (1995). Folk Psychology: The Theory of Mind Debate. Oxford, UK: Blackwell Publishers.
  272. de Groot, A. D. (1965). Thought and Choice in Chess (1st ed.). The Hague, The Netherlands: Mouton Publishers.
  273. Dennett, D. C. (1987). The Intentional Stance. Cambridge, MA: MIT Press.
  274. Devlin, K. J. (1991). Logic and Information. Cambridge: Cambridge University Press.
  275. Domingos, P., & Lowd, D. (2009). Markov Logic: An interface layer for Artificial Intelligence. In T. Brachman, R. J.;Dietterich (Ed.), Synthesis Lectures on Artificial Intelligence and Machine Learning. Seatle: Morgan & Claypool Publishers.
  276. Domingos, P., & Richardson, M. (2007). Markov Logic: A Unifying Framework for Statistical Relational Learning. In B. Getoor, L.;Taskar (Ed.), Introduction to Statistical Relational Learning. Cambridge, MA: MIT Press.
  277. Endsley, M. R. (1988). Design and Evaluation for Situation Awareness Enhancement. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 32. https://doi.org/10.1177/154193128803200221
  278. ExxonMobil. (2010). OIMS: System 10-2 Emergency Preparedness and Response. Retrieved from https://www.cnsopb.ns.ca/sites/default/files/inline/12450_so41877.1_spill_resp onse_soei_0.pdf
  279. Fan, X., McNeese, M., Sun, B., Hanratty, T., Allender, L., & Yen, J. (2010). Human- Agent Collaboration for Time-Stressed Multicontext Decision Making. IEEE Transactions on Systems, Man, and Cybernetics -Part A: Systems and Humans, 40(2), 306-320. https://doi.org/10.1109/TSMCA.2009.2035302
  280. Hadzic, M., Wongthongtham, P., Dillon, T., & Chang, E. (2009). Current issues and the need for ontologies and agents. In Ontology-Based Multi-Agent Systems (pp. 1-14). Berlin, Heidelberg: Springer-Verlag.
  281. Halpern, J. Y. (2003). Reasoning about uncertainty. Cambridge, MA: MIT Press.
  282. Hassard, S. T. (2009). The variations of recognition primed decision-making and how it informs design decision-making. NDM'09 Proceedings of the 9th Bi-Annual International Conference on Naturalistic Decision Making, 57. Swindon, UK: BCS Learning & Development.
  283. Hu, Y., Li, R., & Zhang, Y. (2018). Predicting pilot behavior during midair encounters using recognition primed decision model. Information Sciences, 422, 377-395. https://doi.org/10.1016/j.ins.2017.09.035
  284. Hutton, R. J. B., Warwick, W., Stanard, T., McDermott, P. L., & McIlwaine, S. (2001). Computational Model of Recognition-Primed Decisions (RPD): Improving Realism in Computer-Generated Forces (CGF). Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 45(26), 1833-1837. https://doi.org/10.1177/154193120104502607
  285. IMO. (2009). SOLAS: Consolidated Edition (5th ed.). London, UK: International Maritime Organization.
  286. Ji, Y., Massanari, R. M., Ager, J., Yen, J., Miller, R. E., & Ying, H. (2007). A fuzzy logic-based computational recognition-primed decision model. Information Sciences, 177(20), 4338-4353. https://doi.org/10.1016/j.ins.2007.02.026
  287. Kabbaj, A. (2006). Development of Intelligent Systems and Multi-Agents Systems with Amine Platform. In S. H., P. Hitzler, & P. Øhrstrøm (Eds.), Conceptual Structures: Inspiration and Application. ICCS 2006. Lecture Notes in Computer Science, Volume 4068. Berlin, Heidelberg: Springer.
  288. Kabbaj, A., Bouzouba, K., El Hachimi, K., & Ourdani, N. (2006). Ontologies in Amine Platform: Structures and Processes. In H. Schärfe, P. Hitzler, & P. Øhrstrøm (Eds.), Conceptual Structures: Inspiration and Application. ICCS 2006. Lecture Notes in Computer Science (pp. 300-313). https://doi.org/10.1007/11787181_22
  289. Kabbaj, A., Bouzoubaa, K. M., & Soudi, A. (2005). Amine Platform: an Artificial Intelligence Environment For the Development of Intelligent Systems. First Information and Communication Technologies International Symposium ICTIS. Tetuan, Morocco.
  290. Klein, G. (1998). Sources of Power. Cambridge, MA: MIT Press.
  291. Klein, G. (2004). The Power of Intuition. Doubleday.
  292. Means, B., Salas, E., Crandall, B., & Jacobs, T. O. (1993). Training Decision Makers for the Real World. In G. A. Klein, J. Orasanu, R. Calderwood, & C. E. Zsambok (Eds.), Decision Making in Action: Models and Methods1 (pp. 306-326). Norwood, NJ: Ablex Publishing Corporation.
  293. Millington, I., & Funge, J. (2009). Artificial Intelligence for Games (2nd ed.). Burlington, MA: Morgan Kaufmann Publishers.
  294. Mueller, S. T. (2009). A Bayesian Recognitional Decision Model. Journal of Cognitive Engineering and Decision Making, 3(2), 111-130. https://doi.org/10.1518/155534309X441871
  295. Musharraf, M., Smith, J., Khan, F., & Veitch, B. (2018). Identifying route selection strategies in offshore emergency situations using decision trees. Reliability Engineering & System Safety. https://doi.org/10.1016/j.ress.2018.06.007
  296. Naderpour, M., Lu, J., & Zhang, G. (2014). An intelligent situation awareness support system for safety-critical environments. Decision Support Systems, 59, 325-340. https://doi.org/10.1016/j.dss.2014.01.004
  297. Norling, E. (2004). Folk psychology for human modelling: Extending the BDI paradigm. AAMAS '04 Proceedings of the Third International Conference on Autonomous Agents and Multiagent Systems. New York, NY: IEEE Computer Society, Washington DC.
  298. Norling, E., Sonenberg, L., & Rönnquist, R. (2000). Enhancing Multi-Agent Based Simulation with Human-Like Decision Making Strategies. In S. Moss & P. Davidsson (Eds.), Multi-Agent-Based Simulation. MABS 2000. Lecture Notes in Computer Science, Volume 1979. Berling, Heidelberg: Springer.
  299. Nowroozi, A., Shiri, M. E., Aslanian, A., & Lucas, C. (2012). A general computational recognition primed decision model with multi-agent rescue simulation benchmark. Information Sciences, 187, 52-71. https://doi.org/10.1016/j.ins.2011.09.039
  300. Orasanu, J., & Connolly, T. (1993). The reinvention of decision making. In G. Klein, J. Orasanu, R. Calderwood, & C. E. Zsambok (Eds.), Decision Making in Action: Models and Methods (pp. 3-20). Norwood, NJ: Ablex Publishing Corporation.
  301. OSHA. (2018). Emergency exit routes factsheet. Retrieved April 22, 2019, from https://www.osha.gov/OshDoc/data_General_Facts/emergency-exit-routes- factsheet.pdf
  302. Patterson, R., Fournier, L., Pierce, B., Winterbottom, M., & Tripp, L. (2009). Modeling the dynamics of recognition-primed decision making. Proceedings of NDM9, the 9th International Conference on Naturalistic Decision Making. London, UK: British Computer Society.
  303. Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inferences. San Mateo, CA: Morgan Kaufmann.
  304. Poon, H., & Domingos, P. (2006). Sound and Efficient Inference with Probabilistic and Deterministic Dependencies. Proceedings of the 21st National Conference on Artificial Intelligence -Volume 1, 458-463. Retrieved from http://dl.acm.org/citation.cfm?id=1597538.1597612
  305. Press, G. (2018, February 7). The Brute Force of IBM Deep Blue and Google DeepMind. Retrieved from https://www.forbes.com/sites/gilpress/2018/02/07/the-brute-force-of-deep-blue- and-deep-learning/#3729cb5c49e3
  306. Proulx, G. (2007). Response to fire alarms. Fire Protection Engineering, 33, 8-14. Retrieved from http://www.cfaa.ca/Files/flash/CODES/FIRE ALARM ARTICLES FOR THE AHJ/Fire Alarm Response.pdf
  307. Raedt, L. De, Kersting, K., Natarajan, S., & Poole, D. (2016). Statistical Relational Artificial Intelligence: Logic, Probability, and Computation. In Synthesis Lectures on Artificial Intelligence and Machine Learning (Vol. 10). https://doi.org/10.2200/S00692ED1V01Y201601AIM032
  308. Rao, A. S., & Georgeff, M. P. (1995). BDI Agents: From theory to practice. In V. Lesser & L. Gasser (Eds.), Proceedings of the First International Conference on Multi-Agent Systems (ICMAS-95) (pp. 312-319). Retrieved from 0262621029
  309. Reason, J. (1990). Human error. Cambridge: Cambridge University Press.
  310. Resnick, M. (2001). Recognition Primed decision making in E-Commerce. Proceedings of the Human Factors and Ergonomics Society Annual Meeting. Santa Monica: Sage Journals Ltd.
  311. Shanton, K., & Goldman, A. (2010). Simulation theory. Wiley Interdisciplinary Reviews: Cognitive Science, 1(4), 527-538. https://doi.org/10.1002/wcs.33
  312. Singla, P., & Domingos, P. (2005). Discriminative Training of Markov Logic Networks. Proceedings of the 20th National Conference on Artificial Intelligence - Volume 2, 868-873. Retrieved from http://dl.acm.org/citation.cfm?id=1619410.1619472
  313. Smith, B. M. (2007). Working minds. In Phi Delta Kappan (Vol. 88). https://doi.org/10.1177/003172170708801001
  314. Smith, J. (2015). The effect of virtual environment training on participant competence and learning in offshore emergency egress scenarios [Master thesis]. Memorial University of Newfoundland, St. John's, NL, Canada. Retrieved from: https://research.library.mun.ca/8401/1/thesis.pdf
  315. Sneddon, A., Mearns, K., & Flin, R. (2013). Stress, fatigue, situation awareness and safety in offshore drilling crews. Safety Science, 56, 80-88. https://doi.org/10.1016/j.ssci.2012.05.027
  316. Sokolowski, J. A. (2003). Enhanced Decision Modeling Using Multiagent System Simulation. SIMULATION, 79(4), 232-242. https://doi.org/10.1177/0037549703038886
  317. Sowa, J. F. (1984). Conceptual Structures: Information Processing in Mind and Machine. Reading, MA: Addison-Wesley.
  318. Sowa, J. F. (2000). Knowledge Representation: Logical, Philosophical and Computational Foundations. Pacific Grove, CA: Brooks/Cole Thomson Learning.
  319. Spouge, J. (1999). A Guide to Quantitative Risk Assessment for Offshore Installations. Aberdeen, UK: CMPT Publication.
  320. Thilakarathne, D. J. (2015). Modelling of situation awareness with perception, attention, and prior and retrospective awareness. Biologically Inspired Cognitive Architectures, 12, 77-104. https://doi.org/10.1016/j.bica.2015.04.010
  321. Tong, D., & Canter, D. (1985). The decision to evacuate: a study of the motivations which contribute to evacuation in the event of fire. Fire Safety Journal, 9(3), 257-265. https://doi.org/10.1016/0379-7112(85)90036-0
  322. Tutolo, D. (1979). Attention: Necessary Aspect of Listening. Language Arts, 56(1), 34-37. Retrieved from http://www.jstor.org/stable/41404756
  323. Wankhede, A. (2017, September). Different Types of Alarms on Ships. Marine Insight. Retrieved from https://www.marineinsight.com/marine-safety/different- types-of-alarms-on-ship/
  324. Winerman, L. (2004). Fighting fire with psychology. Monitor on Pscyhology, 35(8), 28. Retrieved from https://www.apa.org/monitor/sep04/fighting
  325. Zsambok, C. E. (1997). Naturalistic decision making: where are we now? In C. E. Zsambok & G. Klein (Eds.), Naturalistic decision making (pp. 3-16). Mahwah, New Jersey: Lawrence Erlbaum Associates, Publishers.
  326. Zsambok, C. E., & Klein, G. A. (Eds.). (1997). Naturalistic Decision Making. Mahwah, New Jersey: Lawrence Erlbaum Associates, Publishers.
  327. Abū Ḥāmid Muḥammad ibn Muḥammad Al-Ghazālī. (1998). The niche of lights: A parallel English-Arabic text (translated by David Buchman) (1st ed.; D. Buchman, trans.). Provo, UT, USA: Brigham Young University.
  328. Ajmone Marsan, M. (1990). Stochastic Petri Nets. Springer.
  329. Ajmone Marsan, M., Conte, G., & Balbo, G. (1984). A Class of Generalized Stochastic Petri Nets for the Performance Evaluation of Multiprocessor Systems. ACM Trans. Comput. Syst., 2(2), 93-122. https://doi.org/10.1145/190.191
  330. Akman, V., & Surav, M. (1996). Steps toward formalizing Context. AI Magzine, 17(3). https://doi.org/https://doi.org/10.1609/aimag.v17i3.1231
  331. Alanen, L. (2014). The Second Meditation and the nature of the human mind. In D. Cunning (Ed.), The Cambridge Companion to Descartes' Meditations (pp. 88- 106). https://doi.org/10.1017/CCO9781139088220.005
  332. Alchemy. (2012). Alchemy: A software for statistical relational learning and probabilistic logic inference based on Markov logic representation. Washington DC. Allen, G. L. (1999). Spatial abilities, cognitive maps and wayfinding: bases for individual differences in spatial cognition and behavior. In R. G. Golledge (Ed.), Wayfinding behavior (pp. 46-80). The John Hopkins University Press.
  333. Aristotle. (2001). Aristotle's On the soul and on memory and recollection [Aristotle's De Anima] (J. Sachs, trans.). Ann Arbor, Michigan, USA: Green Lion Press.
  334. Azarkhil, M. (2013). Dynamic behavior of operating crew in complex systems: an object-based modeling approach [PhD Dissertation] (University of Maryland). Retrieved from https://drum.lib.umd.edu/bitstream/handle/1903/14179/Azarkhil_umd_0117E_ 14228.pdf?sequence=1&isAllowed=y
  335. Azarkhil, M., & Mosleh, A. (2014). Dynamic behavior of operating crew in complex systems. Proceedings -Annual Reliability and Maintainability Symposium. https://doi.org/10.1109/RAMS.2014.6798446
  336. Aziz, A. (2000). Model-checking continuous-time Markov chains. ACM Transactions on Computational Logic, 1(1), 162-170.
  337. Balbo, G., Chiola, G., & Bruell, S. C. (1992). An example of modeling and evaluation of a concurrent program using colored stochastic Petri nets: Lamport's fast mutual exclusion algorithm. IEEE Transactions on Parallel and Distributed Systems, 3(2), 221-240.
  338. Barwise, J. (1981). Scenes and Other Situations. The Journal of Philosophy, 78(7), 369. https://doi.org/10.2307/2026481
  339. Barwise, J., & Perry, J. (1980). The Situation Underground. California: Stanford Cognitive Science Group 1980, Section D.
  340. Barwise, J., & Perry, J. (1983). Situations and attitudes. Cambridge, MA: MIT Press.
  341. Bause, F., & Kritzinger, P. S. (1996). Stochastic Petri Nets: An Introduction to the Theory. Verlag Viewweg.
  342. BBC, A. N. (2013, October). Nairobi siege: How the attack happened. Retrieved from https://www.bbc.com/news/world-africa-24189116
  343. Beusmans, J. M., Aginsky, V., Harris, C. L., & Rensink, R. A. (1995). Analyzing situation awareness during wayfinding in a driving simulator. In D. J. Garland & M. R. Endsley (Eds.), Proceedings of the International Conference on Experimental Analysis and Measurement of Situation Awareness (pp. 245-251). Daytona Beach, Florida: Embry-Riddle Aeronautical University Press.
  344. Blakemore, S.-J., & Decety, J. (2001). From the perception of action to the understanding of intention. Nature Reviews Neuroscience, 2(8), 561-567. https://doi.org/10.1038/35086023
  345. Borowiec, S., & Lien, T. (2016, March). AlphaGo beats human Go champ in milestone for artificial intelligence. Retrieved from https://www.latimes.com/world/asia/la-fg-korea-alphago-20160312-story.html
  346. Bosse, T., & Mogles, N. (2014). Spread of situation awareness in a group: Population- based vs. agent-based modelling. Proceedings -2014 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology - Workshops, WI-IAT 2014, 3, 1117-1124. https://doi.org/10.1109/WI-IAT.2014.169
  347. Bratman, M. (1987). Intention, plans, and practical reason. Cambridge, MA: Harward University Press.
  348. Buckland, M. (2004). Programming Game AI by Example. Jones & Bartlett Learning.
  349. Caduff, D., & Timpf, S. (2005). The Landmark Spider: Representing Landmark Knowledge for Wayfinding Tasks. AAAI Spring Symposium -Technical Report, 30-35.
  350. Canellas, M. C., & Feigh, K. M. (2016). Toward Simple Representative Mathematical Models of Naturalistic Decision Making Through Fast-and-Frugal Heuristics. Journal of Cognitive Engineering and Decision Making, 10(3), 255-267. https://doi.org/10.1177/1555343416656103
  351. Chang, Y. H. J., & Mosleh, A. (2007a). Cognitive modeling and dynamic probabilistic simulation of operating crew response to complex system accidents: Part 1: Overview of the IDAC model. Reliability Engineering & System Safety, 92(8), 997-1013. https://doi.org/10.1016/j.ress.2006.05.014
  352. Chang, Y. H. J., & Mosleh, A. (2007b). Cognitive modeling and dynamic probabilistic simulation of operating crew response to complex system accidents: Part 3: IDAC operator response model. Reliability Engineering & System Safety, 92(8), 1041-1060. https://doi.org/10.1016/j.ress.2006.05.013
  353. Chang, Y. H. J., & Mosleh, A. (2007c). Cognitive modeling and dynamic probabilistic simulation of operating crew response to complex system accidents: Part 5: Dynamic probabilistic simulation of the IDAC model. Reliability Engineering & System Safety, 92(8), 1076-1101. https://doi.org/10.1016/j.ress.2006.05.012
  354. Chang, Y. H. J., & Mosleh, A. (2007d). Cognitive modeling and dynamic probabilistic simulation of operating crew response to complex system accidents. Part 2: IDAC performance influencing factors model. Reliability Engineering & System Safety, 92(8), 1014-1040. https://doi.org/10.1016/j.ress.2006.05.010
  355. Chang, Y. H. J., & Mosleh, A. (2007e). Cognitive modeling and dynamic probabilistic simulation of operating crew response to complex system accidents. Part 4: IDAC causal model of operator problem-solving response. Reliability Engineering & System Safety, 92(8), 1061-1075. https://doi.org/10.1016/j.ress.2006.05.011
  356. Chase, W. G., & Simon, H. A. (1973). THE MIND'S EYE IN CHESS. In Visual Information Processing (pp. 215-281). https://doi.org/10.1016/B978-0-12- 170150-5.50011-1
  357. Chowdhury, S. (2016). Optimization and Business Improvement: Studies in Upstream Oil and Gas Industry. New Jersey: Wiley.
  358. Cornfield, J., Haenszel, W., Hammond, E. C., Lilienfeld, A. M., Shimkin, M. B., & Wynder, E. L. (2009). Smoking and lung cancer: Recent evidence and a discussion of some questions. International Journal of Epidemiology, 38(5), 1175-1191. https://doi.org/10.1093/ije/dyp289
  359. Coyne, K. A. (2009). A predictive model of nuclear power plant crew decision-making and performace in a dynamic simulation environment [PhD Dissertation] (University of Maryland). Retrieved from https://drum.lib.umd.edu/bitstream/handle/1903/9888/Coyne_umd_0117E_108
  360. Crowl, D. A., & Louvar, J. F. (2011). Chemical Process Safety: Fundamentals with applications (3rd ed.). Boston: Pearson Education, Inc.
  361. Cullen, L. W. D. (1993). The public inquiry into the Piper Alpha disaster. Drilling Contractor (United States), 49:4.
  362. Danial, S. N., Khan, F., & Veitch, B. (2018). A Generalized Stochastic Petri Net model of route learning for emergency egress situations. Engineering Applications of Artificial Intelligence, 72, 170-182. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S0952197618300733
  363. Danial, S. N., Smith, J., Khan, F., & Veitch, B. (2019). Human-Like Sequential Learning of Escape Routes for Virtual Reality Agents. Fire Technology, 55(3), 1057-1083. https://doi.org/10.1007/s10694-019-00819-7
  364. Dastani, M., & Testerink, B. (2014). From Multi-Agent Programming to Object Oriented Design Patterns. In F. Dalpiaz, J. Dix, & M. B. van Riemsdijk (Eds.), Engineering Multi-Agent Systems. EMAS 2014. Lecture Notes in Computer Science, Volume 8758. (pp. 204-226). https://doi.org/10.1007/978-3-319-14484- 9_11
  365. Davies, M., & Stone, T. (Eds.). (1995). Folk Psychology: The Theory of Mind Debate. Oxford, UK: Blackwell Publishers.
  366. de Groot, A. D. (1965). Thought and Choice in Chess (1st ed.). The Hague, The Netherlands: Mouton Publishers.
  367. Dennett, D. C. (1987). The Intentional Stance. Cambridge, MA: MIT Press.
  368. Derdikman, D., & Moser, E. I. (2010). A manifold of spatial maps in the brain. Trends in Cognitive Science, 14(12).
  369. Descartes, R. (2015). The passions of the soul and other late philosophical writings (M. Moriarty, Trans.). Oxford, UK: Oxford University Press.
  370. Devlin, K. J. (1991a). Logic and Information. Cambridge: Cambridge University Press.
  371. Devlin, K. J. (1991b). Situations as Mathematical Abstractions. Situation Theory and Its Applications Vol. 1, 25-39.
  372. Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1(1), 269-271. https://doi.org/10.1007/BF01386390
  373. Domingos, P., & Lowd, D. (2009). Markov Logic: An interface layer for Artificial Intelligence. In T. Brachman, R. J.;Dietterich (Ed.), Synthesis Lectures on Artificial Intelligence and Machine Learning. Seatle: Morgan & Claypool Publishers.
  374. Domingos, P., & Richardson, M. (2007). Markov Logic: A Unifying Framework for Statistical Relational Learning. In B. Getoor, L.;Taskar (Ed.), Introduction to Statistical Relational Learning. Cambridge, MA: MIT Press.
  375. Dooley, B. J. (2017). Why AI with augmented and virtual reality will be the next big thing. Upside, 4th April.
  376. Dorigo, M., & Stutzle, T. (2004). Ant Colony Optimization. MIT Press.
  377. Dyson, G. (2012). Turing's Cathedral. New York, NY: Pantheon Books.
  378. Eilam, D. (2014). Of mice and men: building blocks in cognitive mapping. Neuroscience and Biobehavioral Reviews, 47, 393-409.
  379. Emo, B. (2014). Real-World Wayfinding Experiments -Individual Preferences, Decisions and the Space Syntax Approach at Street Corners Beatrix. Retrieved from http://discovery.ucl.ac.uk/1452725/1/Emo_PhD.pdf.REDACTED.pdf
  380. Endsley, M. R. (1988). Design and Evaluation for Situation Awareness Enhancement. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 32. https://doi.org/10.1177/154193128803200221
  381. Endsley, M. R. (1995). Toward a theory of situation awareness in dynamic systems. Human Factors, 37(1), 32-64. https://doi.org/10.1518/001872095779049543
  382. Endsley, M. R. (2000). THEORETICAL UNDERPINNINGS OF SITUATION AWARENESS : A CRITICAL REVIEW Process More Data ≠ More Information.
  383. ExxonMobil. (2010). OIMS: System 10-2 Emergency Preparedness and Response. Retrieved from https://www.cnsopb.ns.ca/sites/default/files/inline/12450_so41877.1_spill_resp onse_soei_0.pdf
  384. Fan, X., McNeese, M., Sun, B., Hanratty, T., Allender, L., & Yen, J. (2010). Human- Agent Collaboration for Time-Stressed Multicontext Decision Making. IEEE Transactions on Systems, Man, and Cybernetics -Part A: Systems and Humans, 40(2), 306-320. https://doi.org/10.1109/TSMCA.2009.2035302
  385. Febbraro, A. Di, Giglio, D., & Sacco, N. (2016). A deterministic and stochastic Petri net model for traffic-responsive signaling control in urban areas. IEEE Transactions on Intelligent Transportation Systems, 17(2), 510-524.
  386. Filippidis, L., Galea, E. R., Lawrence, P., & Gwynne, S. (2001). Visibility Catchment Area of exits and signs. InterFlam 2001: 9 Th International Fire Science & Engineering Conference, 1529-1534. Retrieved from https://fseg.gre.ac.uk/fire/visibility_catchment_area.html
  387. Gale, N., Golledge, R. G., Pellegrino, J. W., & Doherty, S. (1990). The acquisition and integration of route knowledge in an unfamiliar neighborhood. Journal of Environmental Psychology, 10, 3-25.
  388. Galea, E. R. (2003). Pedestrian and Evacuation Dynamics. Proceedings of the 2nd International Conference on Pedestrian and Evacuation Dynamics, Greenwich, UK, 20-22 August 2003. London, UK: CMS Press.
  389. Galea, E. R., Xie, H., & Lawrence, P. (2014). Experimental and Survey Studies on the Effectiveness of Dynamic Signage Systems. Fire Safety Science, 11, 1129- 1143. https://doi.org/10.3801/IAFSS.FSS.11-1129
  390. Gayathri, K. S., Easwarakumar, K. S., & Elias, S. (2017). Probabilistic ontology based activity recognition in smart homes using Markov Logic Network. Knowledge- Based Systems, 121, 173-184. https://doi.org/10.1016/j.knosys.2017.01.025
  391. Gayathri, K. S., Elias, S., & Shivashankar, S. (2014). An Ontology and Pattern Clustering Approach for Activity Recognition in Smart Environments. https://doi.org/10.1007/978-81-322-1771-8_72
  392. Ghahramani, S. (2005). Fundamentals of Probability with Stochastic Processes (3rd ed.). Pearson Prentice Hall.
  393. Gilmore, D., & Self, J. (1988). The application of machine learning to intelligent tutoring systems. In J. Self (Ed.), Artificial intelligence and human learning: intelligent computer-aided instruction.
  394. Goldschmidt, D., Manoonpong, P., & Dasgupta, S. (2017). A Neurocomputational Model of Goal-Directed Navigation in Insect-Inspired Artificial Agents. Frontiers in Neurorobotics, 11, 20. https://doi.org/10.3389/fnbot.2017.00020
  395. Golledge, R. G. (1977). Multidimensional analysis and environmental behavior and design. In I. Altman & J. F. Wohlwill (Eds.), Human behavior and environment: advances in theory and research. Heidelberg: Springer Berlin Heidelberg.
  396. Golledge, R. G. (1990). The Conceptual and Empirical Basis of a General Theory of Spatial Knowledge. In Spatial Choices and Processes (pp. 147-168). https://doi.org/10.1016/B978-0-444-88195-3.50014-3
  397. Golledge, R. G. (1991). Cognition of physical and built environment. In T. Garling & G. W. Evans (Eds.), Environment, Cognition, and Action: An Integrated Approach. New York, NY: Oxford University Press.
  398. Golledge, R. G. (1993). Geographical perspectives on spatial cognition. In T. Garling & R. G. Golledge (Eds.), Behavior and Environment: Psychological and Geographical Approaches (pp. 16-46). Amsterdam: Elsevier Science Publishers B. V. Golledge, R. G. (1999a). Human wayfinding and cognitive maps. In R. G. Golledge (Ed.), Wayfinding behavior (p. 9). Baltimore: The Johns Hopkins University Press.
  399. Golledge, R. G. (1999b). Wayfinding Behavior: Cognitive Mapping and Other Spatial Processes. In Psycoloquy (Vol. 10). Baltimore: The John Hopkins University Press.
  400. Gore, J., Flin, R., Stanton, N., & Wong, B. L. W. (2015). Applications for naturalistic decision-making. Journal of Occupational and Organizational Psychology, 88(2), 223-230. https://doi.org/10.1111/joop.12121
  401. Gorton, I. (1993). Parallel program design using high-level Petri nets. Concurency and Computation: Practice and Experience, 5(2), 87-104.
  402. Götze, J., & Boye, J. (2016). Learning landmark salience models from users' route instructions. J. Locat. Based Serv., 10(1), 47-63. https://doi.org/10.1080/17489725.2016.1172739
  403. Grimmett, G. (2010). Probability on Graphs: Random Processes on Graphs and Lattices. Cambridge: Cambridge University Press.
  404. Grush, R. (2000). Self, world and space: the meaning and mechanisms of ego-and allocentric spatial representation. Brain and Mind, 1, 59-92.
  405. Gruszka, A., Hampshire, A., & Owen, A. M. (2010). Learned Irrelevance Revisited: Pathology-Based Individual Differences, Normal Variation and Neural Correlates. In A. Gruszka, G. Matthews, & B. Szymura (Eds.), Handbook of Individual Differences in Cognition: Attention, Memory, and Executive Control (pp. 127-144). https://doi.org/10.1007/978-1-4419-1210-7_8
  406. Hadzic, M., Wongthongtham, P., Dillon, T., & Chang, E. (2009). Current issues and the need for ontologies and agents. In Ontology-Based Multi-Agent Systems (pp. 1-14). Berlin, Heidelberg: Springer-Verlag.
  407. Halpern, J. Y. (2003). Reasoning about uncertainty. Cambridge, MA: MIT Press.
  408. Harman, G. (1976). Practical Reasoning. The Review of Metaphysics, 29(3), 431-463. Retrieved from https://www.jstor.org/stable/20126812
  409. Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on System Science and Cybernetics, 4(2), 100-107.
  410. Hassard, S. T. (2009). The variations of recognition primed decision-making and how it informs design decision-making. NDM'09 Proceedings of the 9th Bi-Annual International Conference on Naturalistic Decision Making, 57. Swindon, UK: BCS Learning & Development.
  411. Hassler, S. (2016). Marvin Minsky and the pursuit of machine understanding - Making machines-and people-think [Spectral Lines]. IEEE Spectrum, 53(3), 7- 7. https://doi.org/10.1109/MSPEC.2016.7420381
  412. Hayden, S. (2015). NASA is creating a virtual reality mission to MARS, "The Mars 2030 experience." Retrieved from https://www.roadtovr.com/nasa-creating- virtual-reality-mission-mars-mars-2030-experience/
  413. Hayes-Roth, B. (1995). An architecture for adaptive intelligent systems. Artificial Intelligence, 72(1-2), 329-365. https://doi.org/10.1016/0004-3702(94)00004-K
  414. Heath, B. L., & Hill, R. R. (2008). The early history of agent-based modeling. IIE Annual Conference.Proceedings, 971-976. Retrieved from https://search.proquest.com/docview/192465049?accountid=12378
  415. Heiner, M., & Gilbert, D. (2011). How might Petri nets enhance your systems biology toolkit. In L. M. Kristensen & L. Petrucci (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 6709 LNCS (pp. 17-37). https://doi.org/10.1007/978-3-642-21834-7_2
  416. Heiner, M., Herajy, M., Liu, F., Rohr, C., & Schwarick, M. (2012). Snoopy -A unifying Petri net tool. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 7347 LNCS, 398-407. https://doi.org/10.1007/978-3-642-31131-4_22
  417. Heiner, M., Rohr, C., & Schwarick, M. (2013). MARCIE -Model checking and reachability analysis done efficiently. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 7927 LNCS, 389-399. https://doi.org/10.1007/978-3-642- 38697-8_21
  418. Hu, Y., Li, R., & Zhang, Y. (2018). Predicting pilot behavior during midair encounters using recognition primed decision model. Information Sciences, 422, 377-395. https://doi.org/10.1016/j.ins.2017.09.035
  419. Hutton, R. J. B., Warwick, W., Stanard, T., McDermott, P. L., & McIlwaine, S. (2001). Computational Model of Recognition-Primed Decisions (RPD): Improving Realism in Computer-Generated Forces (CGF). Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 45(26), 1833-1837. https://doi.org/10.1177/154193120104502607
  420. IMO. (2009). SOLAS: Consolidated Edition (5th ed.). London, UK: International Maritime Organization.
  421. Isham, V. (1981). An Introduction to Spatial Point Processes and Markov Random Fields. International Statistical Review / Revue Internationale de Statistique, 49(1), 21. https://doi.org/10.2307/1403035
  422. Jain, D. (2011). Knowledge Engineering with Markov Logic Networks: A review. In G. Beierle, C.; Kern-Isberner (Ed.), Proceedings of Evolving Knowledge in Theory and Applications. 3rd Workshop on Dynamics of Knowledge and Belief (DKB-2011) at the 34th Annual German Conference on Artificial Intelligence, KI-2011, vol. 361. (pp. 16-30). Berlin, Germany: Fakultät für Mathematik und Informatik, FernUniversität in Hagen.
  423. Jensen, K. (1981). Coloured Petri nets and the invariant-method. Theoretical Computer Science, 14, 317-336. https://doi.org/https://doi.org/10.1016/0304- 3975(81)90049-9
  424. Jensen, K. (1996). Colored Petri Nets (3rd ed.). Springer.
  425. Ji, Y., Massanari, R. M., Ager, J., Yen, J., Miller, R. E., & Ying, H. (2007). A fuzzy logic-based computational recognition-primed decision model. Information Sciences, 177(20), 4338-4353. https://doi.org/10.1016/j.ins.2007.02.026
  426. Johnson, A. W., Duda, K. R., Sheridan, T. B., & Oman, C. M. (2017). A Closed-Loop Model of Operator Visual Attention, Situation Awareness, and Performance Across Automation Mode Transitions. Human Factors: The Journal of the Human Factors and Ergonomics Society, 59(2), 229-241. https://doi.org/10.1177/0018720816665759
  427. Kabbaj, A. (2006). Development of Intelligent Systems and Multi-Agents Systems with Amine Platform. In S. H., P. Hitzler, & P. Øhrstrøm (Eds.), Conceptual Structures: Inspiration and Application. ICCS 2006. Lecture Notes in Computer Science, Volume 4068. Berlin, Heidelberg: Springer.
  428. Kabbaj, A., Bouzouba, K., El Hachimi, K., & Ourdani, N. (2006). Ontologies in Amine Platform: Structures and Processes. In H. Schärfe, P. Hitzler, & P. Øhrstrøm (Eds.), Conceptual Structures: Inspiration and Application. ICCS 2006. Lecture Notes in Computer Science (pp. 300-313). https://doi.org/10.1007/11787181_22
  429. Kabbaj, A., Bouzoubaa, K. M., & Soudi, A. (2005). Amine Platform: an Artificial Intelligence Environment For the Development of Intelligent Systems. First Information and Communication Technologies International Symposium ICTIS. Tetuan, Morocco.
  430. Kahneman, D., Slovic, P., & Tversky, A. (Eds.). (1982). Judgment under Uncertainty: Heuristics and Biases. Cambridge, United Kingdom: Cambridge University Press.
  431. Kang, S.-J., Kim, Y., & Kim, C.-H. (2010). Live path: adaptive agent navigation in the interactive virtual world. The Visual Computer, 26, 467-476.
  432. Kay, A. (1984). Computer software. Scientific American, 251(3), 53-59.
  433. Khan, B., Khan, F., Veitch, B., & Yang, M. (2018). An operational risk analysis tool to analyze marine transportation in Arctic waters. Reliability Engineering & System Safety, 169, 485-502. https://doi.org/10.1016/j.ress.2017.09.014
  434. Khan, S. A. (1989). Whether man is capable of free thinking. In Freedom of Thought in Islam. Karachi, Pakistan: Royal Book Company.
  435. Kindermann, R., & Snell, J. L. (1980). Markov random fields and their applications. In Science (Vol. 1). https://doi.org/10.1109/TVCG.2009.208
  436. Kingston, C., Nurse, J. R. C., Agrafiotis, I., & Milich, A. B. (2018). Using semantic clustering to support situation awareness on Twitter: the case of world views. Human-Centric Computing and Information Sciences, 8(1), 22. https://doi.org/10.1186/s13673-018-0145-6
  437. Klein, D., Marx, J., & Fischcach, K. (2018). Agent-Based Modeling in Social Science, History, and Philosophy. An Introduction. Historical Social Research, 43(1).
  438. Klein, G. (1998). Sources of Power. Cambridge, MA: MIT Press.
  439. Klein, G. (2004). The Power of Intuition. Doubleday.
  440. Klein, G. (2008). Naturalistic decision making. Human Factors, 50(3), 456-460. https://doi.org/10.1518/001872008X288385
  441. Kokar, M. M., Matheus, C. J., & Baclawski, K. (2009). Ontology-based situation awareness. Information Fusion, 10(1), 83-98. https://doi.org/10.1016/j.inffus.2007.01.004
  442. Kokar, M. M., Shin, S., Ulicny, B., & Moskal, J. (2014). Inferring relations and individuals relevant to a situation: An example. 2014 IEEE International Inter- Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision Support (CogSIMA), 18-194. https://doi.org/10.1109/CogSIMA.2014.6816561
  443. Koutamanis, A. (1995). Multilevel Analysis of Fire Escape Routes in a Virtual Environment.
  444. Kristiansen, S. (2005). Maritime Transportation: Safety Management and Risk Analysis. Amsterdam: Elsevier Butterworth-Heinemann.
  445. Kumar, J. S., & Bhuvaneswari, P. (2012). Analysis of Electroencephalography (EEG) Signals and Its Categorization-A Study. Procedia Engineering, 38, 2525-2536. https://doi.org/https://doi.org/10.1016/j.proeng.2012.06.298
  446. Kyritsis, M., Gulliver, S. R., & Morar, S. (2014). Cognitive and environmental factors influencing the process of spatial knowledge acquisition within virtual reality environments. International Journal of Artificial Life Research, 4(1).
  447. Lee, S. A., Shusterman, A., & Spelke, E. S. (2006). Reorientation and Landmark- Guided Search by Young Children: Evidence for Two Systems. Psychological Science, 17:7, 577-582.
  448. Lehtonen, E., Sahlberg, H., Rovamo, E., & Summala, H. (2017). Learning game for training child bicyclists' situation awareness. Accident Analysis and Prevention, 105, 72-83. https://doi.org/http://dx.doi.org/10.1016/j.aap.2016.07.036
  449. Li, L., & Yokota, H. (2009). Application of Petri nets in bone remodeling. Gene Regulation and System Biology, 3, 105-114.
  450. Li, Y. (2013). Modeling and Simulation of operator knowledge-based behavior [PhD Dissertation] (University of Maryland). Retrieved from https://www.semanticscholar.org/paper/MODELING-AND-SIMULATION- OF-OPERATOR-KNOWLEDGE-BASED- Li/099a18923c1fd3cb9749783cc3ed0f13b28217e8
  451. Liu, F., Deng, D., & Li, P. (2017). Dynamic Context-Aware Event Recognition Based on Markov Logic Networks. Sensors, 17(3), 491. https://doi.org/10.3390/s17030491
  452. Llinas, J., Bowman, C., Rogova, G., Steinberg, A., Waltz, E., & White, F. (2004). Revisiting the JDL Data Fusion Model II (2004). In P. Svensson & J. Schubert (Eds.), Proceedings of the Seventh International Conference on Information Fusion (FUSION 2004), June 28-July 1, 2004. Stockholm, Sweden.
  453. Lucas, J. R. (1961). Minds, machines and Gödel. Philosophy, 36(137), 112-127. Retrieved from http://www.jstor.org/stable/3749270
  454. Luck, M., & Aylett, R. (2000). Applying artificial intelligence to virtual reality: Intelligent virtual environments. Applied Artificial Intelligence, 14(1), 3-32. https://doi.org/10.1080/088395100117142
  455. Lynch, K. (1960). The Image of the City. Cambridge, MA: MIT Press.
  456. MacEachren, A. M. (1992). Application of environmental learning theory to spatial knowledge acquisition from maps. Annals of the Association of American Geographers, 82(2), 245-274.
  457. Maciel, P. R. M., Trivedi, K. S., Matias, R., & Kim, D. S. (2011). Dependability Modelling. In Performance and Dependability in Service Computing: Concepts, Techniques and Research Directions (pp. 53-97). IGI Global.
  458. Mackintosh, N. (1973). Stimulus selection: Learning to ignore stimuli that predict no change in reinforcement. In R. A. Hinde & J. S. Hinder (Eds.), Constraints on Learning (pp. 75-96). London: Academic Press.
  459. Maes, P. (1995). Artificial life meets entertainment: lifelike autonomous agents. Communications of the ACM, 38(11), 108-114. https://doi.org/10.1145/219717.219808
  460. Malizia, A., Onorati, T., Diaz, P., Aedo, I., & Astorga-Paliza, F. (2010). SEMA4A: An ontology for emergency notification systems accessibility. Expert Systems with Applications, 37(4), 3380-3391. https://doi.org/10.1016/j.eswa.2009.10.010
  461. Man, L. (2015). An Agent-based Approach to Automated Merge 4D Arrival Trajectories in Busy Terminal Maneuvering Area. Procedia Engineering, 99, 233-243. https://doi.org/10.1016/j.proeng.2014.12.531
  462. Marwan, W., Rohr, C., & Heiner, M. (2012). Petri nets in snoopy: A unifying framework for the graphical display, computational modelling, and simulation of bacterial regulatory networks. In J. van Helden, A. Toussaint, & D. Thieffry (Eds.), Methods in Molecular Biology (Vol. 804, pp. 409-437). https://doi.org/10.1007/978-1-61779-361-5_21
  463. McCarthy, J. (1979). Ascribing mental qualities to machines (Memo No. 326). Palo Alto, CA.
  464. McKinlay, R. (2016). Technology: Use or lose our navigation skills. Nature, 531(7596), 573-575.
  465. Means, B., Salas, E., Crandall, B., & Jacobs, T. O. (1993). Training Decision Makers for the Real World. In G. A. Klein, J. Orasanu, R. Calderwood, & C. E. Zsambok (Eds.), Decision Making in Action: Models and Methods1 (pp. 306-326). Norwood, NJ: Ablex Publishing Corporation.
  466. Millington, I., & Funge, J. (2009). Artificial Intelligence for Games (2nd ed.). Burlington, MA: Morgan Kaufmann Publishers.
  467. Minsky, M. (1988). The society of mind. New York, NY: Simon & Schuster.
  468. Minsky, M. (1991). Conscious machines. Machinery of Consciousness. Proceedings of the National Research Council of Canada, 75th Anniversary Symposium on Science in Society, June 1991. NRC.
  469. Mo, J. (2013). Performance modeling of communication networks with Markov chains. In J. Walrand (Ed.), Syntheis Lectures on Communication Networks # 5. Morgan & Claypool Publishers.
  470. Moore, G. T., & Golledge, R. G. (Eds.). (1976). Environmental knowing: Theories, research, and methods. Stroudsburg, Pennsylvania: Dowden, Hutchinson & Ross, Inc.
  471. Mosleh, A., & Chang, Y. H. (2004). Model-based human reliability analysis: Prospects and requirements. Reliability Engineering and System Safety, 83(2), 241-253. https://doi.org/10.1016/j.ress.2003.09.014
  472. Mueller, S. T. (2009). A Bayesian Recognitional Decision Model. Journal of Cognitive Engineering and Decision Making, 3(2), 111-130. https://doi.org/10.1518/155534309X441871
  473. Muppala, J. K., & Trivedi, K. S. (1990). GSPN Models: Sensitivity analysis and applications. Proceedings of the 28th Annual Southeast Regional Conference, Greenville, South Caroline. April 18-20, 1990. Greenville, South Carolina: Association for Computing Machinery.
  474. Murata, T. (1989). Petri nets: Properties, analysis and applications. Proceedings of the IEEE, 77(4), 541-580.
  475. Musharraf, M., Khan, F., Veitch, B., MacKnnon, S., & Imtiaz, S. (2013). Human reliability assessment during offshore emergency conditions. Safety Science, 59, 19-27.
  476. Musharraf, M., Smith, J., Khan, F., & Veitch, B. (2018). Identifying route selection strategies in offshore emergency situations using decision trees. Reliability Engineering & System Safety. https://doi.org/10.1016/j.ress.2018.06.007
  477. Musharraf, M., Smith, J., Khan, F., Veitch, B., & MacKinnon, S. (2018). Incorporating individual differences in human reliability analysis: An extension to the virtual experimental technique. Safety Science, 107, 216-223. https://doi.org/10.1016/j.ssci.2017.07.010
  478. Naderpour, M., Lu, J., & Zhang, G. (2014). An intelligent situation awareness support system for safety-critical environments. Decision Support Systems, 59, 325-340. https://doi.org/10.1016/j.dss.2014.01.004
  479. Nakanishi, H., Shimizu, S., & Isbister, K. (2005). Sensitizing social agents for virtual training. Applied Artificial Intelligence, 19(3-4), 341-361. https://doi.org/10.1080/08839510590910192
  480. Nasar, Z., & Jaffry, S. W. (2018). Trust-Based Situation Awareness: Comparative Analysis of Agent-Based and Population-Based Modeling. Complexity, 2018, 1- 17. https://doi.org/10.1155/2018/9540726
  481. Norazahar, N., Khan, F., Veitch, B., & MacKinnon, S. (2016). Prioritizing safety critical human and organizational factors of EER systems of offshore installations in a harsh environment. Safety Science.
  482. Norazahar, N., Smith, J., Khan, F., & Veitch, B. (2018). The use of a virtual environment in managing risks associated with human responses in emergency situations on offshore installations. Ocean Engineering, 147, 621-628. https://doi.org/10.1016/j.oceaneng.2017.09.044
  483. Norling, E. (2004). Folk psychology for human modelling: Extending the BDI paradigm. AAMAS '04 Proceedings of the Third International Conference on Autonomous Agents and Multiagent Systems. New York, NY: IEEE Computer Society, Washington DC.
  484. Norling, E., Sonenberg, L., & Rönnquist, R. (2000). Enhancing Multi-Agent Based Simulation with Human-Like Decision Making Strategies. In S. Moss & P. Davidsson (Eds.), Multi-Agent-Based Simulation. MABS 2000. Lecture Notes in Computer Science, Volume 1979. Berling, Heidelberg: Springer.
  485. Nowroozi, A., Shiri, M. E., Aslanian, A., & Lucas, C. (2012). A general computational recognition primed decision model with multi-agent rescue simulation benchmark. Information Sciences, 187, 52-71. https://doi.org/10.1016/j.ins.2011.09.039
  486. Nwana, H. S. (1996). Software agents: an overview. The Knowledge Engineering Review, 11(3), 205-244. https://doi.org/10.1017/S026988890000789X
  487. Nwiabu, N., Allison, I., Holt, P., Lowit, P., & Oyeneyin, B. (2012). Case-based situation awareness. 2012 IEEE International Multi-Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision Support. 6-8 March 2012, 22-29. https://doi.org/10.1109/CogSIMA.2012.6188388
  488. Nys, M., Gyselinck, V., Orriols, E., & Hickmann, M. (2015). Landmark and route knowledge in children's spatial representation of a virtual environment. Frontiers in Psychology, 5, 1-15. https://doi.org/10.3389/fpsyg.2014.01522
  489. Orasanu, J., & Connolly, T. (1993). The reinvention of decision making. In G. Klein, J. Orasanu, R. Calderwood, & C. E. Zsambok (Eds.), Decision Making in Action: Models and Methods (pp. 3-20). Norwood, NJ: Ablex Publishing Corporation.
  490. OSHA. (2003). Emergency-exit-routes-factsheet. Retrieved from https://www.osha.gov/OshDoc/data_General_Facts/emergency-exit-routes- factsheet.pdf OSHA. (2018). Emergency exit routes factsheet. Retrieved April 22, 2019, from https://www.osha.gov/OshDoc/data_General_Facts/emergency-exit-routes- factsheet.pdf
  491. Parsons, S., & Wooldridge, M. (2002). Game Theory and Decision Theory in Multi- Agent Systems. Autonomous Agents and Multi-Agent Systems, 5(3), 243-254. https://doi.org/10.1023/A:1015575522401
  492. Passini, R. (1977). Wayfinding : a study of spatial problem solving with implications for physical design. Pennsylvania State University, Pennsylvania, USA.
  493. Patterson, R., Fournier, L., Pierce, B., Winterbottom, M., & Tripp, L. (2009). Modeling the dynamics of recognition-primed decision making. Proceedings of NDM9, the 9th International Conference on Naturalistic Decision Making. London, UK: British Computer Society.
  494. Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inferences. San Mateo, CA: Morgan Kaufmann.
  495. Penrose, R. (1989). The emperor's new mind: Concerning computers, minds, and the laws of Physics. Oxford University Press.
  496. Penrose, R. (1991). The emperor's new mind. RSA Journal, 139(5420), 506-514. Retrieved from http://www.jstor.org/stable/41378098
  497. Peterson, J. L. (1977). Petri nets. ACM Computing Surveys (CSUR), 9(3), 223-252.
  498. Petri, C. A. (1966). Kommunikation mit Automaten. Bonn: Institut für Instrumentelle Mathematik, Schriften des IIM Nr. 2; (English translation) (Vol. 1). Vol. 1. New York.
  499. Plank, M., Snider, J., Kaestner, E., Halgren, E., & Poizner, H. (2014). Neurocognitive stages of spatial cognitive mapping measured during free exploration of a large- scale virtual environment. Journal of Neurophysiology, 113, 740-753.
  500. Poon, H., & Domingos, P. (2006). Sound and Efficient Inference with Probabilistic and Deterministic Dependencies. Proceedings of the 21st National Conference on Artificial Intelligence -Volume 1, 458-463. Retrieved from http://dl.acm.org/citation.cfm?id=1597538.1597612
  501. Posner, M. I., Nissen, M. J., & Klein, R. M. (1976). Visual dominance: An information-processing account of its origins and significance. Psychological Review, 83(2), 157-171. https://doi.org/10.1037/0033-295X.83.2.157
  502. Press, G. (2018, February 7). The Brute Force of IBM Deep Blue and Google DeepMind. Retrieved from https://www.forbes.com/sites/gilpress/2018/02/07/the-brute-force-of-deep-blue- and-deep-learning/#3729cb5c49e3
  503. Preston, C. J. (1974). Gibbs States on Countable Sets. Cambridge: Cambridge University Press.
  504. Proulx, G. (2007). Response to fire alarms. Fire Protection Engineering, 33, 8-14. Retrieved from http://www.cfaa.ca/Files/flash/CODES/FIRE ALARM ARTICLES FOR THE AHJ/Fire Alarm Response.pdf
  505. Raedt, L. De, Kersting, K., Natarajan, S., & Poole, D. (2016). Statistical Relational Artificial Intelligence: Logic, Probability, and Computation. In Synthesis Lectures on Artificial Intelligence and Machine Learning (Vol. 10). https://doi.org/10.2200/S00692ED1V01Y201601AIM032
  506. Ramchurn, S. D., Huynh, T. D., Ikuno, Y., Flann, J., Wu, F., Moreau, L., … Roberts, S. J. (2016). A disaster response system based on human-agent collectives. Journal of Artificial Intelligence Research, 57, 661-708.
  507. Rao, A. S., & Georgeff, M. P. (1995). BDI Agents: From theory to practice. In V. Lesser & L. Gasser (Eds.), Proceedings of the First International Conference on Multi-Agent Systems (ICMAS-95) (pp. 312-319). Retrieved from 0262621029
  508. Reason, J. (1990). Human error. Cambridge: Cambridge University Press.
  509. Récopé, M., Fache, H., Beaujouan, J., Coutarel, F., & Rix-Lièvre, G. (2019). A study of the individual activity of professional volleyball players: Situation assessment and sensemaking under time pressure. Applied Ergonomics, 80, 226-237. https://doi.org/10.1016/j.apergo.2018.07.003
  510. Resnick, M. (2001). Recognition Primed decision making in E-Commerce. Proceedings of the Human Factors and Ergonomics Society Annual Meeting. Santa Monica: Sage Journals Ltd.
  511. Ross, S. A. (1973). The economic theory of agency: the principal's problem. American Economic Review, 63(2), 134-139.
  512. Russell, S. J., & Subramanian, D. (1995). Provably Bounded-Optimal Agents. Journal of Artificial Intelligence Research, 2, 575-609. https://doi.org/10.1613/jair.133
  513. Sedgewick, R., & Wayne, K. (2011). Algorithms (4th ed.). Upper Saddle River, NJ, USA: Addison-Wesley.
  514. Selfridge, O. G. (1988). Pandemonium: a paradigm for learning. In Neurocomputing: foundations of research (pp. 115-122). Cambridge, MA: MIT Press.
  515. Shanton, K., & Goldman, A. (2010). Simulation theory. Wiley Interdisciplinary Reviews: Cognitive Science, 1(4), 527-538. https://doi.org/10.1002/wcs.33
  516. Sharma, G., Kaushal, Y., Chandra, S., Singh, V., Mittal, A. P., & Dutt, V. (2017). Influence of Landmarks on Wayfinding and Brain Connectivity in Immersive Virtual Reality Environment. Frontiers in Psychology, 8, 1220. https://doi.org/10.3389/fpsyg.2017.01220
  517. Shoham, Y. (1993). Agent-oriented programming. Artificial Intelligence, 60(1), 51- 92. https://doi.org/10.1016/0004-3702(93)90034-9
  518. Shoham, Y., & Leyton-Brown, K. (2009). Multiagent Systems: Algorithmic, Game- Theoretic, and Logical Foundations. Cambridge, MA: Cambridge University Press.
  519. Singla, P., & Domingos, P. (2005). Discriminative Training of Markov Logic Networks. Proceedings of the 20th National Conference on Artificial Intelligence - Volume 2, 868-873. Retrieved from http://dl.acm.org/citation.cfm?id=1619410.1619472
  520. Sinnett, S., Spence, C., & Soto-Faraco, S. (2007). Visual dominance and attention: The Colavita effect revisited. Perception & Psychophysics, 69(5), 673-686. https://doi.org/10.3758/BF03193770
  521. Smith, B. M. (2007). Working minds. In Phi Delta Kappan (Vol. 88). https://doi.org/10.1177/003172170708801001
  522. Smith, D. C., Cypher, A., & Spohrer, J. (1994). KidSim: programming agents without a programming language. Communications of the ACM, 37(7), 54-67. https://doi.org/10.1145/176789.176795
  523. Smith, J. (2015). The effect of virtual environment training on participant competence and learning in offshore emergency egress scenarios [Master thesis] (Memorial University of Newfoundland). Retrieved from https://research.library.mun.ca/8401/1/thesis.pdf Smoking and Health: Joint Report of the Study Group on Smoking and Health. (1957). Science, 125(3258), 1129-1133. https://doi.org/10.1126/science.125.3258.1129
  524. Sneddon, A., Mearns, K., & Flin, R. (2013). Stress, fatigue, situation awareness and safety in offshore drilling crews. Safety Science, 56, 80-88. https://doi.org/10.1016/j.ssci.2012.05.027
  525. Snidaro, L., Visentini, I., & Bryan, K. (2015). Fusing uncertain knowledge and evidence for maritime situational awareness via Markov Logic Networks. Information Fusion, 21, 159-172. https://doi.org/10.1016/j.inffus.2013.03.004
  526. Snidaro, L., Visentini, I., Bryan, K., & Foresti, G. L. (2012). Markov Logic Networks for context integration and situation assessment in maritime domain. 2012 15th International Conference on Information Fusion, 1534-1539.
  527. Sokolowski, J. A. (2003). Enhanced Decision Modeling Using Multiagent System Simulation. SIMULATION, 79(4), 232-242. https://doi.org/10.1177/0037549703038886
  528. Sowa, J. F. (1984). Conceptual Structures: Information Processing in Mind and Machine. Reading, MA: Addison-Wesley.
  529. Sowa, J. F. (2000). Knowledge Representation: Logical, Philosophical and Computational Foundations. Pacific Grove, CA: Brooks/Cole Thomson Learning.
  530. Spouge, J. (1999). A Guide to Quantitative Risk Assessment for Offshore Installations. Aberdeen, UK: CMPT Publication.
  531. Sud, A., Andersen, E., Curtis, S., Lin, M., & Manocha, D. (2007). Real-time path planning for virtual agents in dynamic environments. Proceedings of IEEE Virtual Reality, 91-98. https://doi.org/10.1109/VR.2007.352468
  532. Szczerbak, M., Bouabdallah, A., Toutain, F., & Bonnin, J.-M. (2013). A Model to Compare and Manipulate Situations Represented as Semantically Labeled Graphs. In H. D. Pfeiffer, D. I. Ignatov, J. Poelmans, & N. Gadiraju (Eds.), Conceptual Structures for STEM Research and Education (pp. 44-57). Berlin, Heidelberg: Springer Berlin Heidelberg.
  533. Thilakarathne, D. J. (2015). Modelling of situation awareness with perception, attention, and prior and retrospective awareness. Biologically Inspired Cognitive Architectures, 12, 77-104. https://doi.org/10.1016/j.bica.2015.04.010
  534. Tolman, E. C. (1948). Cognitive maps in rats and men. The Psychological Review, 55(4).
  535. Tong, D., & Canter, D. (1985). The decision to evacuate: a study of the motivations which contribute to evacuation in the event of fire. Fire Safety Journal, 9(3), 257-265. https://doi.org/10.1016/0379-7112(85)90036-0
  536. Trivedi, K. S. (2002). Probability and Statistics with Reliability, Queuing, and Computer Science Applications (2nd ed.). Wiley Interscience Publication.
  537. Tuan, Y.-F. (1977). Space and place: The perspective of experience. Minneapolis: University of Minnesota Press.
  538. Turing, A. M. (1947). Lecture to the L.M.S. [London Mathematical Society] Feb. 20, 1947. London, UK: This record is held by Cambridge University: King's College Archive Centre.
  539. Turing, A. M. (1950). I.-Computing machinery and intelligence. Mind, LIX(236), 433-460. https://doi.org/10.1093/mind/LIX.236.433
  540. Tutolo, D. (1979). Attention: Necessary Aspect of Listening. Language Arts, 56(1), 34-37. Retrieved from http://www.jstor.org/stable/41404756
  541. Tversky, A., & Kahneman, D. (1974). Judgment under Uncertainty: Heuristics and Biases. Science, 185(4157), 1124-1131. https://doi.org/10.1126/science.185.4157.1124
  542. University of Greenwich, F. S. E. G. (2017). EXODUS capabilities. Retrieved from https://fseg.gre.ac.uk/exodus/exodus_products.html
  543. Vandenberg, A. E. (2016). Human Wayfinding: Integration of Mind and Body. In R. H. Hunter, L. A. Anderson, & B. L. Belza (Eds.), Community Wayfinding: Pathways to Understanding (pp. 17-32). https://doi.org/10.1007/978-3-319- 31072-5_2
  544. von Neumann, J., & Morgenstern, O. (1944). Theory of Games and Economic Behavior. Princeton, NJ: Princeton University Press.
  545. Waller, D., & Lippa, Y. (2007). Landmarks as beacons and associative cues: Their role in route learning. Memory & Cognition, 35(5), 910-924. https://doi.org/10.3758/BF03193465
  546. Wang, R. F., & Spelke, E. S. (2002). Human spatial representation: insights from animals. Trends in Cognitive Sciences, 6, 376-382.
  547. Wankhede, A. (2017, September). Different Types of Alarms on Ships. Marine Insight. Retrieved from https://www.marineinsight.com/marine-safety/different- types-of-alarms-on-ship/
  548. Weinspach, P. M., Gundlach, J., Klingelhofer, H. G., Ries, R., & Schneider, U. (1997). Analysis of the Fire on April 11th, 1996; Recommendations and Consequences for Dusseldorf Rhein-Ruhr-Airport. Staatskanzlei Nordrhein-Wstfalen, Mannesmannufer, 1.
  549. Winerman, L. (2004). Fighting fire with psychology. Monitor on Pscyhology, 35(8), 28. Retrieved from https://www.apa.org/monitor/sep04/fighting
  550. Wooldridge, M. (2009). An Introduction to MultiAgent Systems. West Sussex, United Kingdom: John Wiley & Sons Ltd.
  551. Wooldridge, M., & Jennings, N. R. (1995). Agent theories, architectures and languages: a survey. In M. J. Wooldridge & N. R. Jennings (Eds.), Intelligent Agents. https://doi.org/10.1007/3-540-58855-8
  552. Xie, H., Filippidis, L., Galea, E. R., Blackshields, D., & Lawrence, P. J. (2012). Experimental analysis of the effectiveness of emergency signage and its implementation in evacuation simulation. Fire and Materials, 36(5-6), 367-382. https://doi.org/10.1002/fam.1095
  553. Xu, G., Cao, Y., Ren, Y., Li, X., & Feng, Z. (2017). Network Security Situation Awareness Based on Semantic Ontology and User-Defined Rules for Internet of Things. IEEE Access, 5, 21046-21056. https://doi.org/10.1109/ACCESS.2017.2734681
  554. Yang, C., Wang, D., Zeng, Y., Yue, Y., & Siritanawan, P. (2019). Knowledge-based multimodal information fusion for role recognition and situation assessment by using mobile robot. Information Fusion, 50, 126-138. https://doi.org/10.1016/j.inffus.2018.10.007
  555. Yurkiewicz, I. R., & Tsao, J. W. (2012). Book Review: Why people get lost: the psychology and neuroscience of spatial cognition by Paul A. Dudchenko. Journal of the Neurological Sciences, 313(1-2), 197-198.
  556. Zsambok, C. E. (1997). Naturalistic decision making: where are we now? In C. E. Zsambok & G. Klein (Eds.), Naturalistic decision making (pp. 3-16). Mahwah, New Jersey: Lawrence Erlbaum Associates, Publishers.
  557. Zsambok, C. E., & Klein, G. A. (Eds.). (1997). Naturalistic Decision Making. Mahwah, New Jersey: Lawrence Erlbaum Associates, Publishers.
  558. I