Academia.eduAcademia.edu

Outline

Neutron interferometry, fifth force and axion like particles

2021, The European Physical Journal C

https://doi.org/10.1140/EPJC/S10052-021-09888-X

Abstract

We propose a new possible detection strategy to reveal the fermion–fermion interaction mediated by axions and axion-like particles, based on interferometric measurement of neutron beams. We consider an interferometer in which the neutron beam is split in two sub-beams propagating in regions with differently oriented magnetic fields. The beam paths and the strength of the magnetic fields are set in such a way that the phase difference depends only on the axion-induced interaction. The resulting phase difference is directly related to the presence of axions. Our results show that such a phase might represent, in the future, a tool to probe the existence of axions and axion-like particles or a fifth force with interferometry.

References (59)

  1. J. Ellis, Nucl. Phys. A 827, 187-198 (2009)
  2. S.M. Bilenky, B. Pontecorvo, Phys. Lett. B 61, 248 (1976)
  3. S.M. Bilenky, B. Pontecorvo, Yad. Fiz. 3, 603 (1976)
  4. O. Nachtmann, Elementary Particle Physics: Concepts and Phe- nomena (Springer, Berlin, 1990)
  5. A. Capolupo, G. Lambiase, A. Quaranta, Phys. Rev. D 101, 095022 (2020)
  6. V. Rubin, W.K. Thonnard Jr., N. Ford, Astrophys. J. 238, 471 (1980)
  7. N. Aghanim et al., Planck Collaboration, Astron. Astrophys. 641, A6 (2020)
  8. R.D. Peccei, H. Quinn, Phys. Rev. Lett. 38, 1440 (1977)
  9. R.D. Peccei, H. Quinn, Phys. Rev. D 16, 1791 (1977)
  10. S. Weinberg, Phys. Rev. Lett. 40, 223 (1978)
  11. F. Wilczek, Phys. Rev. Lett. 40, 279 (1978)
  12. G.G. Raffelt, J. Phys. A 40, 6607 (2007)
  13. D.J.E. Marsch, Phys. Rep 643, 1 (2016)
  14. M. Dine, W. Fischler, M. Srednicki, Phys. Lett. B 104, 199 (1981)
  15. A. Zhitnitsky, Sov. J. Nucl. Phys. 31, 260 (1980)
  16. Particle Data Group P. A. Zyla et al., Progress of Theoretical and Experimental Physics, vol. 2020, Issue 8, August 2020, 083C01 (2020)
  17. J.E. Kim, Phys. Rev. Lett. 43, 103 (1979)
  18. M.A. Shifman, A. Vainshtein, V.I. Zakharov, Nucl. Phys. B 1(66), 493 (1980)
  19. J.E. Kim, D.J.E. Marsch, Phys. Rev. D 93, 025027 (2016)
  20. I. De Martino, T. Broadhurst, S.-H. Henry-Tye, T. Chiueh, H.-Y. Schive, R. Lazkoz, Phys. Rev. Lett. 119, 221103 (2017)
  21. V.A. Rubakov, JETP Lett. 65, 621-624 (1997)
  22. E. Zavattini et al., PVLAS Collaboration, Phys. Rev. D 77, 032006 (2008)
  23. P. Pugnat et al. (OSQAR Collaboration), Phys. Rev. D 78, 092003 (2008)
  24. R. Ballou et al. (OSQAR Collaboration), Phys. Rev. D 92, 092002 (2015)
  25. K. Ehret et al. (ALPS Collaboration), Phys. Lett. B 689(4-5), 149- 155 (2010)
  26. S. Aune et al. (CAST Collaboration), Phys. Rev. Lett. 107, 261302 (2011)
  27. N. Du et al. (ADMX Collaboration), Phys. Rev. Lett. 120, 151301 (2018)
  28. R. Barbieri et al., Phys. Dark Univ. 15, 135-141 (2017)
  29. A. Capolupo, G. Lambiase, G. Vitiello, Adv. High Energy Phys. 826051 (2015)
  30. A. Capolupo, I. De Martino, G. Lambiase, A. Stabile, Phys. Lett. B 790, 427-435 (2019)
  31. J.E. Moody, F. Wilczek, Phys. Rev. D 30, 130 (1984)
  32. R. Daido, F. Takahashi, Phys. Lett. B 772, 127 (2017)
  33. V.B. Bezerra, G.L. Klimchitskaya, V.M. Mostepanenko, C. Romero, Eur. Phys. J. C 74, 2859 (2014)
  34. G.L. Klimchitskaya, V.M. Mostepanenko, Eur. Phys. J. C 75, 164 (2015)
  35. G.L. Klimchitskaya, V.M. Mostepanenko, Phys. Rev. D 95, 123013 (2017)
  36. A. Capolupo, S.M. Giampaolo, G. Lambiase, A. Quaranta, Phys. Lett. B 804, 135407 (2020)
  37. H. Rauch, S.A. Werner, Neutron Interferometry-Lessons in Exper- imental Quantum Mechanics, Wave-Particle Duality, and Entan- glement, 2nd edn. (Oxford University Press, Oxford, 2015)
  38. S.A. Werner, J.-L. Staudenmann, R. Colella, Phys. Rev. Lett. 42, 1103 (1979)
  39. B.E. Allman, H. Kaiser, S.A. Werner, A.G. Wagh, V.C. Rakhecha, J. Summhammer, Phys. Rev. A 56, 4420 (1997)
  40. A.G. Wagh, V.C. Rakhecha, Phys. Lett. A 148(1-2), 17-19 (1990)
  41. A.G. Wagh, V.C. Rakhecha, P. Fischer, A. Ioffe, Phys. Rev. Lett. 81, 1992 (1998)
  42. L.B. Leinson, JCAP09, 2021, 001 (2021)
  43. A. Sedrakian, Phys. Rev. D 93, 065044 (2016)
  44. A. Sedrakian, Phys. Rev. D 99, 043011 (2019)
  45. C.A.J. O'Hare, E. Vitagliano, Phys. Rev. D 102, 115026 (2020)
  46. L. Chen, J. Liu, K. Zhu, Constraining Axion-to-Nucleon interac- tion via ultranarrow linewidth in the Casimir-less regime (2021). arXiv:2107.08216 [quant-ph]
  47. F. Ott, S. Kozhevnikov, A. Thiaville, J. Torrejon, M. Vazquez, Nucl. Instrum. Methods Phys. Res. A 788, 29-34 (2015)
  48. I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series and Prod- ucts, 7th edn. (Academic Press, Cambridge, 2007), pp. 110-111
  49. A. Steyerl, Phys. Lett. B 29(1), 33-35 (1969)
  50. International Atomic Energy Agency, Compendium of Neutron Beam Facilities for High Precision Nuclear Data Measurements, IAEA-TECDOC-1743, IAEA, Vienna (2014)
  51. G.L. Klimchitskaya, P. Kuusk, V.M. Mostepanenko, Phys. Rev. D 101, 056013 (2020)
  52. J. Jaeckel, M. Spannowsky, Phys. Lett. B 753, 482-487 (2016)
  53. M. Bauer, M. Neubert, A. Thamm, J. High Energy Phys. 2017, 44 (2017)
  54. W. Altmannhofer, S. Gori, D.J. Robinson, Phys. Rev. D 101, 075002 (2020)
  55. P.W. Graham, I.G. Irastorza, S.K. Lamoreaux, A. Lindner, K.A. van Bibber, Ann. Rev. Nucl. Part. Sci. 65, 485-514 (2015)
  56. J.H. Chang, R. Essig, S. McDermott, J. High Energy Phys. 2018, 51 (2018)
  57. O.P.A.L. Collaboration, G. Abbiendi et al., Eur. Phys. J. C 26, 331- 344 (2003)
  58. S. Knapen, T. Lin, H.K. Lou, T. Melia, Phys. Rev. Lett. 118, 171801 (2017)
  59. M. Bauer, M. Heiles, M. Neubert, A. Thamm, Eur. Phys. J. C 79, 74 (2019)