Neutron interferometry, fifth force and axion like particles
2021, The European Physical Journal C
https://doi.org/10.1140/EPJC/S10052-021-09888-XAbstract
We propose a new possible detection strategy to reveal the fermion–fermion interaction mediated by axions and axion-like particles, based on interferometric measurement of neutron beams. We consider an interferometer in which the neutron beam is split in two sub-beams propagating in regions with differently oriented magnetic fields. The beam paths and the strength of the magnetic fields are set in such a way that the phase difference depends only on the axion-induced interaction. The resulting phase difference is directly related to the presence of axions. Our results show that such a phase might represent, in the future, a tool to probe the existence of axions and axion-like particles or a fifth force with interferometry.
References (59)
- J. Ellis, Nucl. Phys. A 827, 187-198 (2009)
- S.M. Bilenky, B. Pontecorvo, Phys. Lett. B 61, 248 (1976)
- S.M. Bilenky, B. Pontecorvo, Yad. Fiz. 3, 603 (1976)
- O. Nachtmann, Elementary Particle Physics: Concepts and Phe- nomena (Springer, Berlin, 1990)
- A. Capolupo, G. Lambiase, A. Quaranta, Phys. Rev. D 101, 095022 (2020)
- V. Rubin, W.K. Thonnard Jr., N. Ford, Astrophys. J. 238, 471 (1980)
- N. Aghanim et al., Planck Collaboration, Astron. Astrophys. 641, A6 (2020)
- R.D. Peccei, H. Quinn, Phys. Rev. Lett. 38, 1440 (1977)
- R.D. Peccei, H. Quinn, Phys. Rev. D 16, 1791 (1977)
- S. Weinberg, Phys. Rev. Lett. 40, 223 (1978)
- F. Wilczek, Phys. Rev. Lett. 40, 279 (1978)
- G.G. Raffelt, J. Phys. A 40, 6607 (2007)
- D.J.E. Marsch, Phys. Rep 643, 1 (2016)
- M. Dine, W. Fischler, M. Srednicki, Phys. Lett. B 104, 199 (1981)
- A. Zhitnitsky, Sov. J. Nucl. Phys. 31, 260 (1980)
- Particle Data Group P. A. Zyla et al., Progress of Theoretical and Experimental Physics, vol. 2020, Issue 8, August 2020, 083C01 (2020)
- J.E. Kim, Phys. Rev. Lett. 43, 103 (1979)
- M.A. Shifman, A. Vainshtein, V.I. Zakharov, Nucl. Phys. B 1(66), 493 (1980)
- J.E. Kim, D.J.E. Marsch, Phys. Rev. D 93, 025027 (2016)
- I. De Martino, T. Broadhurst, S.-H. Henry-Tye, T. Chiueh, H.-Y. Schive, R. Lazkoz, Phys. Rev. Lett. 119, 221103 (2017)
- V.A. Rubakov, JETP Lett. 65, 621-624 (1997)
- E. Zavattini et al., PVLAS Collaboration, Phys. Rev. D 77, 032006 (2008)
- P. Pugnat et al. (OSQAR Collaboration), Phys. Rev. D 78, 092003 (2008)
- R. Ballou et al. (OSQAR Collaboration), Phys. Rev. D 92, 092002 (2015)
- K. Ehret et al. (ALPS Collaboration), Phys. Lett. B 689(4-5), 149- 155 (2010)
- S. Aune et al. (CAST Collaboration), Phys. Rev. Lett. 107, 261302 (2011)
- N. Du et al. (ADMX Collaboration), Phys. Rev. Lett. 120, 151301 (2018)
- R. Barbieri et al., Phys. Dark Univ. 15, 135-141 (2017)
- A. Capolupo, G. Lambiase, G. Vitiello, Adv. High Energy Phys. 826051 (2015)
- A. Capolupo, I. De Martino, G. Lambiase, A. Stabile, Phys. Lett. B 790, 427-435 (2019)
- J.E. Moody, F. Wilczek, Phys. Rev. D 30, 130 (1984)
- R. Daido, F. Takahashi, Phys. Lett. B 772, 127 (2017)
- V.B. Bezerra, G.L. Klimchitskaya, V.M. Mostepanenko, C. Romero, Eur. Phys. J. C 74, 2859 (2014)
- G.L. Klimchitskaya, V.M. Mostepanenko, Eur. Phys. J. C 75, 164 (2015)
- G.L. Klimchitskaya, V.M. Mostepanenko, Phys. Rev. D 95, 123013 (2017)
- A. Capolupo, S.M. Giampaolo, G. Lambiase, A. Quaranta, Phys. Lett. B 804, 135407 (2020)
- H. Rauch, S.A. Werner, Neutron Interferometry-Lessons in Exper- imental Quantum Mechanics, Wave-Particle Duality, and Entan- glement, 2nd edn. (Oxford University Press, Oxford, 2015)
- S.A. Werner, J.-L. Staudenmann, R. Colella, Phys. Rev. Lett. 42, 1103 (1979)
- B.E. Allman, H. Kaiser, S.A. Werner, A.G. Wagh, V.C. Rakhecha, J. Summhammer, Phys. Rev. A 56, 4420 (1997)
- A.G. Wagh, V.C. Rakhecha, Phys. Lett. A 148(1-2), 17-19 (1990)
- A.G. Wagh, V.C. Rakhecha, P. Fischer, A. Ioffe, Phys. Rev. Lett. 81, 1992 (1998)
- L.B. Leinson, JCAP09, 2021, 001 (2021)
- A. Sedrakian, Phys. Rev. D 93, 065044 (2016)
- A. Sedrakian, Phys. Rev. D 99, 043011 (2019)
- C.A.J. O'Hare, E. Vitagliano, Phys. Rev. D 102, 115026 (2020)
- L. Chen, J. Liu, K. Zhu, Constraining Axion-to-Nucleon interac- tion via ultranarrow linewidth in the Casimir-less regime (2021). arXiv:2107.08216 [quant-ph]
- F. Ott, S. Kozhevnikov, A. Thiaville, J. Torrejon, M. Vazquez, Nucl. Instrum. Methods Phys. Res. A 788, 29-34 (2015)
- I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series and Prod- ucts, 7th edn. (Academic Press, Cambridge, 2007), pp. 110-111
- A. Steyerl, Phys. Lett. B 29(1), 33-35 (1969)
- International Atomic Energy Agency, Compendium of Neutron Beam Facilities for High Precision Nuclear Data Measurements, IAEA-TECDOC-1743, IAEA, Vienna (2014)
- G.L. Klimchitskaya, P. Kuusk, V.M. Mostepanenko, Phys. Rev. D 101, 056013 (2020)
- J. Jaeckel, M. Spannowsky, Phys. Lett. B 753, 482-487 (2016)
- M. Bauer, M. Neubert, A. Thamm, J. High Energy Phys. 2017, 44 (2017)
- W. Altmannhofer, S. Gori, D.J. Robinson, Phys. Rev. D 101, 075002 (2020)
- P.W. Graham, I.G. Irastorza, S.K. Lamoreaux, A. Lindner, K.A. van Bibber, Ann. Rev. Nucl. Part. Sci. 65, 485-514 (2015)
- J.H. Chang, R. Essig, S. McDermott, J. High Energy Phys. 2018, 51 (2018)
- O.P.A.L. Collaboration, G. Abbiendi et al., Eur. Phys. J. C 26, 331- 344 (2003)
- S. Knapen, T. Lin, H.K. Lou, T. Melia, Phys. Rev. Lett. 118, 171801 (2017)
- M. Bauer, M. Heiles, M. Neubert, A. Thamm, Eur. Phys. J. C 79, 74 (2019)