Memory-limited non-U-shaped learning with solved open problems
2013, Theoretical Computer Science
https://doi.org/10.1016/J.TCS.2012.10.010Abstract
AI
AI
In empirical cognitive science, U-shaped learning describes a phenomenon where a learner initially acquires knowledge, then forgets it, before ultimately mastering it again. This study distinguishes between semantic and syntactic U-shapes, addressing open questions in prior literature while revealing new insights, particularly in memory-limited contexts such as Bounded Memory State (BMS) learning and Memoryless Feedback (MLF) learning. Results indicate that certain classes of learning are dependent on U-shaped behavior for effective learning, highlighting novel techniques for analyzing learning criteria beyond established frameworks.
References (50)
- D. Angluin, Inductive inference of formal languages from positive data, Information and Control 45 (1980) 117-135.
- J. B ārzdin ¸š, Inductive inference of automata, functions and programs, in: Proc. of the International Congress of Mathematicians, 1974, pp. 455-560 (English translation in, American Mathematical Society Translations: Series 2 109 (1977), pp. 107-112).
- L. Blum, M. Blum, Toward a mathematical theory of inductive inference, Information and Control 28 (1975) 125-155.
- G. Baliga, J. Case, W. Merkle, F. Stephan, W. Wiehagen, When unlearning helps, Information and Computation 206 (2008) 694-709.
- T. Bower, Concepts of development, in: Proceedings of the 21st International Congress of Psychology, Presses Universitaires de France, Paris, 1978.
- M. Bower, Starting to talk worse: Clues to language development from children's late speech errors, in: S. Strauss, R. Stavy (Eds.), U-Shaped Behavioral Growth, in: Developmental Psychology Series, Academic Press, NY, 1982.
- S. Carey, Face perception: anomalies of development, in: S. Strauss, R. Stavy (Eds.), U-Shaped Behavioral Growth, in: Developmental Psychology Series, Academic Press, NY, 1982.
- J. Case, Periodicity in generations of automata, Mathematical Systems Theory 8 (1974) 15-32.
- J. Case, Infinitary self-reference in learning theory, Journal of Experimental and Theoretical Artificial Intelligence 6 (1994) 3-16.
- J. Case, The power of vacillation in language learning, SIAM Journal on Computing 28 (6) (1999) 1941-1969.
- L. Carlucci, J Case, S. Jain, F. Stephan, Results on memory-limited U-shaped learning, Information and Computation 205 (2007) 1551-1573.
- L. Carlucci, J. Case, S. Jain, F. Stephan, Non-U-shaped vacillatory and team learning, Journal of Computer and System Sciences 74 (2008) 409-430.
- L. Carlucci, S. Jain, E. Kinber, F. Stephan, Variations on U-shaped learning, Information and Computation 204 (8) (2006) 1264-1294.
- J. Case, S. Jain, S. Lange, T. Zeugmann, Incremental concept learning for bounded data mining, Information and Computation 152 (1999) 74-110.
- 35 The table omits mention of the various criteria featuring linear time learners or some form of decisiveness. It also does not present results such as Theorem 4.2, pertaining to the impossibility of gaining non-U-shaped learnability by providing more resources to the learner. 36 This can be shown using techniques from [17], suitably modified.
- J. Case, T. Kötzing, Dynamic modeling in inductive inference, in: Proc. of ALT (Algorithmic Learning Theory), 2008, pp. 404-418.
- J. Case, T. Kötzing, Solutions to open questions for non-U-shaped learning with memory limitations, in: Proc. of ALT (Algorithmic Learning Theory), 2010.
- J. Case, T. Kötzing, Strongly non-U-shaped learning results by general techniques, in: Proc. of COLT (Conference on Learning Theory), 2010, pp. 181-193.
- J. Case, T. Kötzing, Measuring learning complexity with criteria epitomizers, in: Proc. of STACS (Symposium on Theoretical Aspects of Computer Science), 2011, pp. 320-331.
- J. Case, C. Lynes, Machine inductive inference and language identification, in: M. Nielsen, E. Schmidt (Eds.), Proceedings of the 9th International Colloquium on Automata, Languages and Programming, in: Lecture Notes in Computer Science, vol. 140, Springer-Verlag, Berlin, 1982, pp. 107-115.
- J. Case, S. Moelius, Optimal language learning, in: Proc. of ALT (Algorithmic Learning Theory), 2008, pp. 419-433.
- J. Case, S. Moelius, U-shaped, iterative, and iterative-with-counter learning, Machine Learning 72 (2008) 63-88.
- R. Diestel, Graph Theory, Springer, 2000.
- M. Fulk, S. Jain, D. Osherson, Open problems in systems that learn, Journal of Computer and System Sciences 49 (3) (1994) 589-604.
- R. Freivalds, E. Kinber, C. Smith, On the impact of forgetting on learning machines, Journal of the ACM 42 (1995) 1146-1168.
- M. Fulk, A Study of Inductive Inference Machines, Ph.D. Thesis, SUNY at Buffalo, 1985.
- M. Fulk, Prudence and other conditions on formal language learning, Information and Computation 85 (1990) 1-11.
- E. Gold, Language identification in the limit, Information and Control 10 (1967) 447-474.
- Klaus Jantke, Monotonic and non-monotonic inductive inference of functions and patterns, in: J. Dix, K. Jantke, P. Schmitt (Eds.), Nonmonotonic and Inductive Logic, in: Lecture Notes in Computer Science, vol. 543, Springer, Berlin / Heidelberg, 1991, pp. 161-177.
- S. Jain, E.B. Kinber, Iterative learning from texts and counterexamples using additional information, ALT (2009) 308-322.
- S. Jain, S. Lange, S. Moelius, S. Zilles, Incremental learning with temporary memory, Theoretical Computer Science 411 (29-30) (2010) 2757-2772.
- S. Jain, D. Osherson, J. Royer, A. Sharma, Systems that Learn: An Introduction to Learning Theory, second edition, MIT Press, Cambridge, Massachusetts, 1999.
- T. Kötzing, Abstraction and Complexity in Computational Learning in the Limit, Ph.D. Thesis, University of Delaware, 2009. Available online at http://pqdtopen.proquest.com/#viewpdf?dispub=3373055.
- D. Kozen, Indexings of subrecursive classes, Theoretical Computer Science 11 (1980) 277-301.
- E. Kinber, F. Stephan, Language learning from texts: mind changes, limited memory and monotonicity, Information and Computation 123 (1995) 224-241.
- S. Lange, T. Zeugmann, Monotonic versus non-monotonic language learning, in: K. Jantke, G. Brewka, P. Schmitt (Eds.), Proceedings of the Second International Workshop on Nonmonotonic and Inductive Logic, in: Lecture Notes in Artificial Intelligence, vol. 659, Springer-Verlag, Berlin, 1993, pp. 254-269.
- S. Lange, T. Zeugmann, Incremental learning from positive data, Journal of Computer and System Sciences 53 (1996) 88-103.
- G. Marcus, S. Pinker, M. Ullman, M. Hollander, T.J. Rosen, F. Xu, Overregularization in Language Acquisition, in: Monographs of the Society for Research in Child Development, vol. 57, University of Chicago Press, 1992, Includes commentary by H. Clahsen.
- D. Osherson, M. Stob, S. Weinstein, Systems that Learn: An Introduction to Learning Theory for Cognitive and Computer Scientists, MIT Press, Cambridge, Mass, 1986.
- D. Osherson, S. Weinstein, Criteria of language learning, Information and Control 52 (1982) 123-138.
- K. Plunkett, V. Marchman, U-shaped learning and frequency effects in a multi-layered perceptron: implications for child language acquisition, Cognition 38 (1) (1991) 43-102.
- J. Royer, J. Case, Subrecursive Programming Systems: Complexity and Succinctness, in: Research Monograph in Progress in Theoretical Computer Science, Birkhäuser, Boston, 1994.
- H. Rogers, Theory of Recursive Functions and Effective Computability, McGraw Hill, New York, 1967, Reprinted by MIT Press, Cambridge, Massachusetts, 1987.
- G. Schäfer-Richter, Über Eingabeabhängigkeit und Komplexität von Inferenzstrategien, Ph.D. Thesis, RWTH Aachen, 1984.
- S. Strauss, R. Stavy (Eds.), U-Shaped Behavioral Growth, in: Developmental Psychology Series, Academic Press, NY, 1982.
- S. Strauss, R. Stavy, N. Orpaz, The child's development of the concept of temperature, 1977. Unpublished manuscript, Tel-Aviv University.
- N. Taatgen, J. Anderson, Why do children learn to say broke? A model of learning the past tense without feedback, Cognition 86 (2) (2002) 123-155.
- K. Wexler, P. Culicover, Formal Principles of Language Acquisition, MIT Press, Cambridge, Massachusetts, 1980.
- R. Wiehagen, Limes-Erkennung rekursiver Funktionen durch spezielle Strategien, Elektronische Informationverarbeitung und Kybernetik 12 (1976) 93-99.
- R. Wiehagen, A thesis in inductive inference, in: J. Dix, K. Jantke, P. Schmitt (Eds.), Nonmonotonic and Inductive Logic, 1st International Workshop, in: Lecture Notes in Artificial Intelligence, vol. 543, Springer-Verlag, Karlsruhe, Germany, 1991, pp. 184-207.