Academia.eduAcademia.edu

Outline

Normalising phylogenetic networks

Molecular Phylogenetics and Evolution

https://doi.org/10.1016/J.YMPEV.2021.107215

Abstract

Rooted phylogenetic networks provide a way to describe species' relationships when evolution departs from the simple model of a tree. However, networks inferred from genomic data can be highly tangled, making it difficult to discern the main reticulation signals present. In this paper, we describe a natural way to transform any rooted phylogenetic network into a simpler canonical network, which has desirable mathematical and computational properties, and is based only on the 'visible' vertices in the original network. The method has been implemented and we demonstrate its application to some examples.

References (17)

  1. G. Cardona, F. Rosselló, and G. Valiente. Comparsion of tree-child phylogenetic networks. IEEE/ACM Trans. Comput. Biol. Bioinf., 6:552-569, 2009.
  2. T. Dagan and W. Martin. Getting a better picture of microbial evolution en route to a network of genomes. Phil. Trans. R. Soc. B, 364:2187-2196, 2009.
  3. A.W.M. Dress, V. Moulton, M. Steel, and T. Wu. Species, clusters and the 'Tree of Life': A graph-theoretic perspective. Journal of Theoretical Biology, 265(4):535-542, 2018.
  4. A. R. Francis and M. Steel. Which phylogenetic networks are merely trees with additional arcs? Systematic Biology, 64(5):768-777, 2015.
  5. D.H. Huson, R. Rupp, and C. Scornavacca. Phylogenetic Networks: Concepts, Algorithms and Applications. Cambridge University Press, 2010.
  6. D.H. Huson and M. Steel. PhyloSketch. http://ab.inf.uni-tuebingen.de/software/phylosketch, 2020.
  7. L. Jetten and L. van Iersel. Nonbinary tree-based phylogenetic networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 64(1):205-217, 2018.
  8. T. Marcussen, A. Heier, K. Brysting, B. Oxelman, and K.S. Jakobsen. From gene trees to a dated allopoly- ploid network: insights from the angiosperm genus Viola (Violaceae). Systematic Biology, 64(1):84-101, 2015.
  9. B.M.E. Moret, L. Nakhleh, T. Warnow, C.R. Linder, A. Tholse, A. Padolina, J. Sun, and R. Timme. Phy- logenetic networks: Modeling, reconstructibility, and accuracy. IEEE/ACM Trans. Comput. Biol. Bioinf., 1(1):13-23, 2004.
  10. F. Pardi and C. Scornavacca. Reconstructible phylogenetic networks:do not distinguish the indistinguish- able. PLoS Comput. Biol., 11(e1004135):768-777, 2015.
  11. P. Puigbo, Y. I. Wolf, and E. V. Koonin. Seeing the Tree of Life behind the phylogenetic forest. BMC Biology, 11(1):46, 2013.
  12. C. Semple and J. Simpson. When is a phylogenetic network simply an amalgamation of two trees? Bulletin of Mathematical Biology, 80:2338-2348, 2018.
  13. M. Steel. Phylogeny: Discrete and Random processes in Evolution. SIAM, 2016.
  14. S.J. Willson. Properties of normal phylogenetic networks. Bulletin of Mathematical Biology, 72(2):340-358, 2010.
  15. S.J. Willson. Regular networks can be uniquely constructed from their trees. IEEE/ACM Trans. Comput. Biol. Bioinf., 8:785-796, 2011.
  16. S.J. Willson. CSD homomorphisms between phylogenetic networks. IEEE/ACM Transactions on Compu- tational Biology and Bioinformatics, 9(4):1128-1138, July 2012.
  17. S.J. Willson. Tree-average distances on certain phylogenetic networks have their weights uniquely deter- mined. Algorithms for Molecular Biology, 7(13), 2012.