Menggunakan Metode Support Vector Machine
2019
Abstract
People with extraverted and introverted personality type use social media in different ways for different reasons. In order to understand people’s personality, their social media profiles can be used as a source of information. In this research, Support Vector Machine method is used to classify Twitter user’s personality as an extrovert or introvert. Twitter user’s profile of 46 accounts are downloaded through the Twitter API. Labeling of personality types is based on the results of personality questionnaires. Number of features used is 17 features. RBF kernel is used as kernel function. After performing feature selection and parameter selection, we train the training dataset to get the best model. The model is used to predict the test data. From the test results, SVM method can be used to classify Twitter user’s personality with 88,89% accuracy.
References (16)
- Introversion-Extroversion) on Social Media Use," 2010.
- Widiantari, K. S., dan Herdiyanto, Y. K., "Perbedaan Intensitas Komunikasi Melalui Jejaring Sosial antara Tipe Kepribadian Ekstrovert dan Introvert pada Remaja," 2013.
- Zywica, J., dan Danowski, J., "The Faces of Facebookers: Investigating Social Enhancement and Social Compensation Hypotheses; Predicting Facebook and Offline Popularity from Sociability and Self Esteem, and Mapping the Meanings of Popularity with Semantic Networks," Journal of Computer-Mediated Communication, vol. 14, 2008.
- Amiel, T., dan Sargent, S. L., "Individual differences in Internet usage motives," 2004.
- Golbeck, J., Robles, C., dan Turner, K., "Predicting Personality with Social Media." pp. 253-262.
- Golbeck, J., Robles, C., Edmondson, M., dan Turner, K., "Predicting Personality from Twitter," 2011.
- Qiu, L., Han, L., Ramsay, J., Yang, F., "You are what you tweet: Personality expression and perception on Twitter," Journal of Research in Personality vol. 46, pp. 710-718, 2012.
- Sarwani, M. Z., dan Mahmudy, W. F., "Analisis Twitter Untuk Mengetahui Karakter Seseorang Menggunakan Algoritma Naïve Bayess Classifier," 2015.
- Ahmad, N., dan Siddique, J., "Personality Assessment using Twitter Tweets," 2017.
- Nguyen, T., Phung, D., Adams, B., dan Venkatesh, S., "Towards Discovery of Influence and Personality Traits Through Social Link Prediction," in Proceedings of the Fifth International AAAI Conference on Weblogs and Social Media, Barcelona, Spain, 2011.
- Cortes, C., dan Vapnik, V., "Support- Vector Networks," 1995.
- Riquelme, F., dan Gonzalez-Cantergiani, P., "Measuring User Influence on Twitter -a Survey," Journal of Information Processing and Management, April 2016, 2016.
- Pal, A., dan Counts, S., "Identifying Topical Authorities in Microblogs," 2011.
- Samghabadi, N. S., Maharjan, S., Sprague, A., Diaz-Sprague, R., dan Solorio, T., "Detecting Nastiness in Social Media," in Proceedings of the First Workshop on Abusive Language Online Vancouver, Canada, 2017, pp. 63-72.
- Hamdila, M., "Klasifikasi Kepribadian Ekstrovert dan Introvert pada Akun Twitter Menggunakan Metode Naïve Bayes Classifier," Jurusan Teknik Informatika, Fakultas Sains dan Teknologi, UIN Suska Riau, Pekanbaru, 2018.
- Chang, C.-C., dan Lin, C.-J., "LIBSVM: A Library for Support Vector Machines," 2013.