Evaluation of aluminium tolerance in grapevine rootstocks
2015
https://doi.org/10.5073/VITIS.2009.48.167-173Abstract
Aluminum (Al) toxicity is a major worldwide agricultural problem. At low pH, Al speciates into the soluble and phyto-toxic form Al3+, inhibiting the root growth and affecting plant development. In Brazil, agriculture in acidic soils with elevated concentration of Al has significantly increased in the last decades. Therefore, in order to achieve efficient agriculture practices, the selection of plant cultivars with improved Al resistance has become crucial in this type of soils. In this work we have evaluated the Al resistance of six genotypes of grapevine rootstocks. The grapevine hardwood cuttings were grown in nutrient solution in the absence and presence of 250 and 500 μM Al at pH 4.2. The phenotypic indexes of relative root growth, fresh and dry root weight, root area, hematoxylin staining profile, and Al content were evaluated for all six genotypes. These phenotypic indexes allowed us to identify the 'Kober 5BB', 'Gravesac', 'Paulsen 1103', and 'IAC ...
References (22)
- nutrition, 255-265. Martinus Nijhoff, Dordrecht, Boston, Lancaster.
- MOUSTAKAS, M.; OUZOUNIDOU, G.; LANNOYE, R.; 1993: Rapid screening for aluminum tolerance in cereals by use of the chlorophyll fluorescence test. Plant Breed. 111, 343-346.
- MURASHIGE, T.; SKOOG, F.; 1962: A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant. 15, 473-497.
- PIÑEROS, M. A.; CANÇADO, G. M. A.; KOCHIAN, L. V. 2008 a: Novel prop- erties of the wheat aluminum tolerance organic acid transporter (TaALMT1) revealed by electrophysiological characterization in Xenopus oocytes: Functional and structural implications. Plant Physiol. 147, 2131-2146.
- PIÑEROS, M. A.; CANÇADO, G. M. A.; MARON, L. G.; LYI, M.; MENOSSI, M.; KOCHIAN, L. V.; 2008 b: Not all ALMT1-type transporters mediate aluminum-activated organic acid responses: The case of ZmALMT1 an anion selective transporter. Plant J. 53, 352-367.
- POLLE, E.; KONZAK, C. F.; KITTRICK, J. A.; 1978: Visual detection of alumi- num tolerance levels in wheat by hematoxylin staining of seedling roots. Crop Sci. 18, 823-827.
- RINCÓN, M.; GONZALES, R. A.; 1992: Aluminum partitioning in intact roots of aluminum-tolerant and aluminum-sensitive wheat (Triticum aes- tibum L.) cultivars. Plant Physiol. 99, 1021-1028.
- SASAKI, T.; YAMAMOTO, Y.; EZAKI, B.; KATSUHARA, M.; JU-AHN, S.; RYAN, P. R.; DELHAIZE, E.; MATSUMOTO, H.; 2004: A wheat gene encoding an aluminum-activated malate transporter. Plant J. 37, 645-653.
- SASAKI, M.; YAMAMOTO, Y.; MATSUMOTO, H.; 1996: Lignin deposition in- duced by aluminum in wheat (Triticum aestivum) roots. Physiol. Plant. 96, 193-198.
- WANG, C.; WOOD, F. A.; 1973: A modified aluminon reagent for deter- mination of aluminum after HNO 3 -H 2 SO 4 digestion. Canad. J. Soil Sci. 53, 237-239.
- ZHANG, G.; HODDINOTT, J.; TAYLOR, G. J.; 1994: Characterization of 1,3-β- D-glucan (callose) synthesis in roots of Triticum aestivum in re- sponse to aluminum toxicity. J. Plant Physiol. 144, 229-234.
- References CANÇADO, G. M. A.; LOGUERCIO, L. L.; MARTINS, P. R.; PARENTONI, S. N.; PAIVA, E.; BORÉM, A.; LOPES, M. A.; 1999: Hematoxylin staining as a phenotypic index for aluminum tolerance selection in tropical maize (Zea mays L.). Theor. Appl. Genet. 99, 747-754.
- CANÇADO, G. M. A.; NOGUEIRA, F. T. S.; CAMARGO, S. R.; DRUMMOND, R. D.; JORGE, R. A.; MENOSSI, M.; 2008: Gene expression profiling in maize roots under aluminum stress. Biol. Plant. 53, 475-485.
- CANÇADO, G. M. A.; ROSA-JR, V. E.; FERNADEZ, J. H.; MARON, L. G.; JORGE, R. A.; MENOSSI, M.; 2005: Glutathione S-transferase and aluminum toxicity in maize. Funct. Plant Biol. 32, 1045-1055.
- DELHAIZE, E.; CRAIG, S.; BEATON, C. D.; BENNET, R. J.; JAGADISH, V. C.; RANDALL, P. J.; 1993: Aluminum tolerance in wheat (Triticum aesti- vum L.): uptake and distribution of aluminum in root apices. Plant Physiol. 103, 685-693.
- FOY, C. D.; CHANEY, R. C.; WHITE, M. C.; 1978: The physiology of metal toxicity in plants. Annu. Rev. Plant Physiol. 29, 511-566.
- FOY, C. D.; PETERSON, C. J.; 1994: Acid soil tolerances of wheat lines se- lected for high grain protein content. J. Plant Nutrit. 17, 377-400.
- KOCHIAN, L. V.; 1995: Cellular mechanisms of aluminum resistance in plants. Annu. Rev. Plant Physiol. 46, 237-260.
- KOCHIAN, L. V.; HOEKENGA, O. A.; PIÑEROS, M. A.; 2004: How do crop plants tolerate acid soils? -Mechanisms of aluminum tolerance and phosphorous efficiency. Annu. Rev. Plant Biol. 55, 459-493.
- KOCHIAN, L. V.; PIÑEROS, M. A.; HOEKENGA, O. A.; 2005: The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. Plant Soil 274, 175-195.
- LLUGANY, M.; MASSOT, N.; WISSEMEIER, A. H.; POSCHENRIEDER, C.; HORST, W. J.; BARCELÓ, J.; 1994: Aluminum tolerance in maize cultivars as assessed by callose production and root elongation. Z. Pflanzen- ernähr. Bodenk. 157, 447-451.
- MAGNAVACA, R.; GARDNER, C. O.; CLARK, R. B.; 1987: Evaluation of in- bred maize lines for aluminum tolerance in nutrient solution. In: H. W. GABELMAN, B. C. LOUGHMAN (Eds): Genetic aspects of plant