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Abstract—Measuring the gain of an analog or mixed-signal 

block can be done by applying a sine wave signal or a rec-

tangular signal at the input and measuring the amplitude 

of the block’s output signal. Sometimes the drift of the DC 

offset of the block or of the tester’s instruments is a chal-

lenge: if it is too high, it disturbs the measurement and 

reduces accuracy. In this case, using the binary Thue-

Morse Sequence instead of a periodic rectangular or sine 

wave as an input reduces the effect of DC offset drift. 

Using the Thue-Morse Sequence also helps to reduce drift 

influence in a technique described in the literature. This 

technique allows for very accurate linearity measurements 

in ADCs, so that cheaper analog tester instruments or 

analog built-in self test can be used without losing accu-

racy. 

I. INTRODUCTION  

One test of the test suite for analog or mixed-signal 
IP blocks (like ADCs, DACs, amplifiers etc.; in the fol-
lowing part of this paper simply called IPs) involves the 
measurement of the amplification or gain. This also 
holds for ADCs and DACs, where the term ‘gain’ refers 
to the difference in analog input or output voltage per 
LSB of the digital signal.  

The gain is usually measured by applying a rectangu-
lar or sine wave at the input and measuring the output 
amplitude. The gain of the IP is then calculated as the 
ratio of output amplitude to input amplitude. 

Drift of the DC offset voltage sometimes disturbs these 
measurements. This offset voltage drift can be caused by 
many sources:  

• drift in the IP’s voltage reference,  

• drift in the tester’s instruments (or, if used, the 
analog Built-In Self Test (BIST) modules),  

• low frequency (1/f) noise in MOSFETs,  

• drift caused by temperature changes or fluctua-
tions in the supply voltage etc.  

Using a sufficiently high number of periods of the 
waveform usually allows for averaging the output ampli-
tude, and thus reducing the effect of drift to an insignifi-
cant level. This method can be sufficient or even optimal 
if the time for the measurement is not critical. In IC pro-
duction test, however, the available time is often so short 
that DC offset drift in the measurement path cannot be 
cancelled by averaging the output signal, and thus accu-
racy is reduced. In such cases, choosing the optimal in-
put signal can help reduce sensitivity to drift. 

In the following, we will show that the aperiodic 
Thue-Morse Sequence (TMS) as a stimulus waveform 
enables the complete cancellation of higher order drift 
terms – compared to a substantial, but not complete can-
cellation when using a periodic waveform.  

The rest of this paper is organized as follows: Chap-
ter II introduces the TMS. Chapter III describes a model 
for the measurement system and introduces the symbols 
used. Chapter IV provides a calculation for the IP’s gain 
using the TMS. Chapter V generally compares the errors 
when using the TMS and the periodic rectangular signal. 
Chapter VI provides a calculation for these errors at the 
exponential decay function and at random noise. Chapter 
VII discusses some applications and Chapter VIII con-
cludes.  

II. THE THUE-MORSE SEQUENCE  

The Thue-Morse Sequence t(n) is a binary sequence 
that was first implicitly described by Prouhet in 1851. It 
was rediscovered by Thue in 1906, and later by Morse in 
1921. It can be constructed as follows: 

t(0)       = –1 

t(2n)     =   t(n) 

t(2n+1) = –t(n)  

The first terms of the TMS are:  

,....1,1,1,1,1,1,1,1)( −−−−=nt  (1) 

The TMS is an infinite, self-similar, recurrent, but 
aperiodic sequence. Due to some of its astonishing prop-
erties, it is used mainly in mathematics [1] and crystal 



physics [2], but also in such diverse fields as chess the-
ory [1], counter synchronization [3], and computer-
generated music [4]. 

 Surprisingly, only one reference is known in metrol-
ogy [5]: a paper that describes a way of measuring the 
linearity of high-precision ADCs in a low-precision en-
vironment. The authors intuitively constructed a binary 
sequence identical to the TMS, but since they were ap-
parently unaware that they were using the TMS, they 
didn’t provide a mathematical proof that their sequence 
provides better drift rejection than a periodic rectangular 
signal. The algorithm will be explained in more detail in 
Chapter VII B.  

III. MODEL AND SYMBOLS USED   

To illustrate the solution described in this paper, Fig-
ure 1 shows the IP under test (inner gray box) and the 
surrounding BIST shell or tester.  

Figure 1: IP and measurement system with its input 

and output values 

The constant voltage V is first multiplied (modu-
lated) by the TMS t(n) and forms the IP’s input. This 
signal is amplified with the IP’s gain factor g (which is 
the value to be measured). An unknown perturbation 
(drift) s(n) is added – it can originate in the IP itself, or 
in the tester / BIST circuitry. The resulting IP output 
signal is called y(n). This output signal is then again 
multiplied (demodulated) with t(n). The resulting signal 
is summed up for all values n=0…N-1; the sum is called 
S. Note that the stimulus and the sampling of the IP’s 
output are time-discrete. 

The following symbols are used: 

-V and V are constant stimuli levels 
N is the number of samples  

n is the index of the sample  (n=0,1,2,…N-1) 

t(n) is the n-th element of the Thue-Morse Sequence 

g is the unknown IP amplification (gain)  

s(n) is the perturbation due to DC drift 

y(n) are the measured IP output values  

S is the sum of the final values. 

 

Of course the idea of noise-reduction by modulation and 

demodulation is far from new: it is used everywhere 

where the transmission path adds noise, e.g. in chopper-

stabilized amplifiers, active sensors like strain gauges, 

various transmission systems etc. What is new in this 

paper, is the idea to use an aperiodic signal to obtain a 

complete cancellation of the lowest ordered noise or drift 

terms. 

It is important that the setup described in Figure 1 is 

very simple – so it can be implemented in a BIST shell 

without a large area overhead. 

IV. CALCULATION OF THE IP’S GAIN 

For characterizing or testing the IP, we need to calcu-

late the gain g with known y(n) and unknown perturba-

tion s(n). As the perturbation s(n) is a finite, time-

discrete signal, it can be expressed as a power series: 

    ∑
∞

=

−==
0

)1...0()(

k

k
k Nnnsns                          (2) 

The value S is defined as (cf. Figure 1): 
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As can be seen in Figure 1, y(n) is: 
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Substituting (2) into (4), we obtain: 

 ∑
∞

=

+=
0

)()(

k

k
knsntVgny                 (5) 

Calculating S according to (3) using (5) results in:     
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This can be simplified, because the sum over the            
g V t(n) t(n) can be calculated separately. Because      
t(n) t(n) ≡ 1, we get: 
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Thus (6) can then be written as: 
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The TMS has an important and astonishing property 
[1], (it is because of this property that it is used in this 
paper): If N is a power of 2, then 
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with ld(n) being the dual logarithm, i.e. ld(2)=1, 
ld(4)=2 etc. This causes the first ld(N)+1 terms sk to dis-
appear, thus (10) becomes:  
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And, if only the perturbation terms sk of order 
k≤ld(N) are present, (10) becomes: 

 
VN

S
g =  (11) 

Thus, we can calculate g when knowing S, even in 
the presence of the perturbation terms sk with k≤ld (N). 
Of these terms, the DC drift term linear with time is s1 
and the first derivative of the linear DC drift is s2 – these 
two are the most important terms in a slowly drifting 
environment and are thus completely filtered out even 
with as few as N=8 samples.   

V. REMAINING ERROR OF TMS AND RECTANGULAR 

SIGNAL 

To discuss the remaining error due to the use of the 
TMS, we firstly consider the periodic rectangular signal              
(-1, 1,-1, 1,-1, 1…), which is often used as a stimulus in 
IPs as described above. We then compute the error when 
using the TMS and the error when using the rectangular 
signal.  

A. Rectangular signal 

We define the rectangular signal a(n) that 
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(cf. Figure 2). When applying it to an IP similar to 
Figure 1, the measured values y(n) are similar to (4): 
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In which S is similar to (8): 
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Figure 2: TMS and rectangular signal 

B. Error when using  the TMS and the rectangular 

signal 

To compare the TMS and the rectangular signal, the 
error of S is interesting – i.e. how much does S deviate 
from the value it would have without perturbation, i.e. if 
s(n)≡0:  

This error is for the rectangular signal, from (14):  
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And for the TMS, from (10): 
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When knowing the statistics of the coefficients sk, we 
are thus able to estimate and compare the errors when 
using the TMS or the rectangular signal.  

VI. TMS AND RECTANGULAR SIGNAL WITH 

DIFFERENT PERTURBATION SIGNALS 

In the following, the two most frequent real-world 
perturbation (or drift) signals s(n) are used to compare a 
measurement with the TMS against one with the rectan-
gular signal: the exponential decay function and noise, 
where we distinguish between white noise and low-pass 
filtered noise.  

a(n) 

t(n) 



A. Exponential decay function 

Often, the IP under measurement is not yet under 
fully settled conditions (IC temperature, supply voltage, 
reference voltage etc.) when the measurement starts. 
Test time constraints may prevent waiting until they 
have completely settled, or, in other cases, the measure-
ment itself often unintentionally modifies conditions, 
such as temperature or supply voltage. The effect of this 
change in conditions is interpreted as the perturbation 
s(n). It often can be described with an exponential decay 
function: 

)/exp()0()( Tnsns −=  (17) 

with T=Time constant. Exponential decay signals 
with T=5, T=10, and T=20 were used for the calculation  
(Figure 3). 
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Figure 3: The exponential decay functions  

Figure 4 shows the ratio of the remaining errors ETMS 
/ ERECT (eq. (15) and (16)), if the perturbation function is 
an exponential decay function. Since a 2-sample TMS is 
the same as a 2-sample rectangular signal (namely –1, 
1), also the errors for a rectangular wave and TMS are 
the same for N=2, so that the ratio is 1.  

1,0E-04

1,0E-03

1,0E-02

1,0E-01

1,0E+00

2 4 8 16 32 64 128
# Samples N

E
rr
o
r 
E
T
M
S
 /
 E

R
E
C
T

T=20

T=10

T=5

 

Figure 4: Remaining error for the exponential de-
cay function: ratio of ETMS / ERECT 

The impressive reduction of the error due to pertur-
bation should not lead to losing sight of other sources of 
inaccuracy – of course an error reduction in the order of 

10-3 will not be achievable in practice, because other 
sources of inaccuracy then will become dominant.  

B. Noise  

As opposed to the deterministic exponential decay 
function, noise is by its nature non-deterministic and can 
only be described with a certain spectrum in the fre-
quency domain. Depending on what the physical root 
cause of the noise is, it is a white noise, 1/f or 1/f

2
 noise 

at its source. It can be low-pass filtered (e.g. noise 
caused by cross-sensitivity to thermal fluctuations; these 
fluctuations being filtered by thermally slow IC cases) 
and appear at the IP to be 1/f2 or even 1/f3 noise. The 
same holds for noise from voltage references: any noise 
on a voltage reference of an IP usually results in a corre-
sponding noise at the IP’s output. To reduce the effect of 
the voltage reference’s noise, its voltage is often passed 
through a low-pass filter, and thus arrives at the IP as 
low-pass filtered noise.  

For calculating the error when using the TMS or a 
rectangular signal, it is important to consider the spec-
trum of the noise. It is evident that the re-ordering of the 
stimulus sequence done by the TMS doesn’t help with 
white noise, because in time-discrete systems, white 
noise has a value for each sample independent of the 
value of the previous sample. For the same reason, the 
periodic rectangular wave doesn’t reduce the influence 
of white noise. 

In low-pass filtered noise, however, both the TMS 
and the rectangular signal are efficient. This can be ex-
plained best for the TMS: in low-pass filtered noise, low 
frequencies dominate, so that the higher ordered pertur-
bation terms sk become smaller with rising order k. 
Thus, because the TMS eliminates the lower ordered sk 
terms, it eliminates the biggest part of the perturbation. 

Figure 5: Noise with different falloff characteris-
tics (arbitrary units) 

The error due to noise was calculated numerically. It 
was found that 1/f noise (3 dB / octave falloff) is not 
reduced by the TMS. Also for 1/f

2
 noise (which is 

equivalent to a 6 dB / octave falloff), no improvement 
was found. In –12 dB / octave and –18 dB / octave noise, 
however, the improvement is considerable. Figure 6 
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shows the error reduction ratio (ETMS/ERECT) reduction in 
error for different sample numbers, and for –12 dB / 
octave and –18 dB / octave low pass filtered noise.  

Figure 6: Remaining error for low-pass filtered 
noise: ratio of ETMS / ERECT 

A natural question is, how does the suppression of low-
ordered fluctuation terms in the time domain look like in 
the frequency domain? This question cannot be easily 
answered, because a direct relation between time and 
frequency domain only exists in linear time-invariant 
systems. The described modulation-demodulation 
scheme is linear, but, due to the aperiodic nature of the 
Thue-Morse Sequence, it is not time-invariant. This is 
also the reason why the influence on noise had to be 
simulated instead of being directly calculated. 

Summarizing this chapter, using the TMS in the pres-
ence of DC drift that follows the exponential decay 
function, results in an impressive error reduction. In the 
presence of low-pass filtered noise, the error reduction 
is much less, but may in many applications still be sig-
nificant. Since there is no improvement in white noise 
and in –6 dB / octave noise, there has to be a good low-
pass pre-filtering of noise-generating signals, like band-
gap voltages, to take advantage of the TMS. 

VII.  APPLICATIONS 

While the proposed method addresses a quite wide area 

of applications in the field of testing and measurement, 

one has to remember that it is only beneficial if a num-

ber of conditions are met: 

• The perturbation is mainly due to a slow DC 
offset drift, not to random noise. If white noise 
is dominant, however, the rectangular signal 
would be the better choice. 

• The total number of samples is too small to av-
erage out the perturbation using the rectangular 
signal. This is usually due to restricted test time.  

• The number of samples is (or can be made to be) 
a power of 2. 

• The IP under measurement is linear and quasi-
static, i.e. it does not remember the input history. 

This is mostly the case in the following applications: 

A. Delta-Sigma DACs 

Delta-Sigma DACs usually consist of a one-bit con-
verter followed by an analog reconstruction filter. These 
DACs are very linear, but usually have a high DC drift 
[6]. This makes them potential candidates for gain test 
with the proposed method. This applies especially to 
slow, high precision audio DACs.   

B. Linearity Test for ADCs 

While the proposed method directly addresses gain 
measurement, there is an interesting application for ADC 
linearity measurement [5]: The authors used a special 
algorithm they called SEIR (Stimulus Error Identifica-
tion and Removal) [6]. For this, they applied to the ADC 
the sum of a slow periodic triangular signal and a faster 
TMS signal. The ADC thus received (nearly) the same 
triangular signal many times, some times with the over-
layed TMS signal = –1, and some times with this TMS 
signal =1. The redundant information out of these two 
measurement sets was used to calculate the non-linearity 
of the input signal, and remove it from the ADC’s output 
signal (Figure 7).  

Figure 7: The setup for the linearity test  

By doing so, the authors showed that a 16 bit ADC 
can be tested using a stimulus source with less than 7 bit 
linearity; the reference voltage showed a drift during the 
measurement of as much as 500 ppm. Even in this envi-
ronment, the inaccuracy of the measurement – shown by 
simulation and by experiment – was much less than 1 
LSB on 16-bit basis. In this setup, the use of the TMS 
overlay signal allowed for a perfect cancellation of the 
DC drift. Thus, as the authors also noted, there is a good 
chance to integrate a test signal generator with 7-bit ac-
curacy within an analog BIST circuit for a 16 bit audio 
ADC.  

This might help solve the permanent problem of ana-
log BIST: on the one hand, the BIST modules are ex-
pected to be more precise than the IP they measure – on 
the other hand they have to be much smaller than the IP.   

The authors of [5] didn’t dive deeper into the proper-
ties of the TMS they used – as mentioned in chapter II, 
they were apparently unaware that they used an already 
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well-known sequence with properties that perfectly 
suited their requirements.  

Part of the motivation for this paper is to elucidate 
the mathematical foundation of that portion of their work 
that is related to the TMS. Combining the TMS-based 
gain measurement and the described TMS-based linear-
ity measurement using the SEIR algorithm can be rea-
sonably expected to facilitate analog testing. 

C. Analog blocks 

Amplifiers, and sensors that need an external excitation 

(optical sensors and sources, some micro electro-

mechanical systems (MEMS), strain gauges, etc.) may 

be tested using the TMS, provided that the DC drift is 

an issue, the gain has to be measured with high preci-

sion, and a quasi-static condition can be achieved. 

D. Other systems 

The use of the TMS as a stimulus sequence is not re-
stricted to production testing for analog / mixed signal 
IPs: in any system that needs to be stimulated in order to 
measure its transfer gain, it may be worth considering 
stimulating with the TMS.  

Suppose, for example, that an engineer wants to 
know if probecard P1 or probecard P2 leads to a better 
contact yield, with contact yield gradually changing 
(drifting) from day to day – so that the s1 linear drift 
term is present, in addition to an s2 drift derivative, with 
the higher sk terms being quite small. Each day one of 
the two probecards is used according to a scheme to be 
devised by the engineer. In this case it may be useful to 
test the probecard, not with the periodic rectangular-like 
scheme: P1, P2, P1, P2, P1, P2, P1, P2, but with the TMS-
like scheme: P1, P2, P2, P1, P2, P1, P1, P2.    

VIII. CONCLUSION 

While the binary Thue-Morse Sequence has been 
used in many fields of mathematics and physics, it has 
apparently never been applied to the precise measure-
ment of the IP sensitivity (or IP gain) in a fluctuating 
environment.  

Whenever an IP needs a (binary) stimulus, it might 
be useful to stimulate, not with a rectangular (–1, 1, –1, 
1, –1, 1…) signal, but with the said Thue-Morse Se-
quence. Then, for example, a sequence with 32 samples 
already completely removes the five lowest ordered per-
turbation terms, which, as we have shown, can lead to 
reducing the error due to DC drift by a factor of a hun-
dred to a thousand.  

However, the Thue-Morse Sequence as an excitation 
signal should only be used if the perturbation is a rather 
slowly changing DC drift, rather than white noise. Also 
the IP has to be linear and quasi-static at the input signal 
frequency used. Finally, reducing the perturbation by 
averaging using a periodic input signal is simpler, so the 

TMS should be primarily considered only if the avail-
able time is too short for averaging.   

There is an – albeit quite small – number of applications 
in IC testing that fulfill the above requirements, mainly 
in delta-sigma DACs and amplifiers. Another interesting 
application is the linearity measurement of high-
precision ADCs, which needs an additional algorithm 
and employs the TMS.  

Both gain and linearity measurements with the described 
method can be done using a BIST shell with little area 
overhead. 

The remaining error when using the Thue-Morse Se-
quence – compared to a periodic rectangular signal – is 
highly dependent on the particular application: from no 
difference if white noise dominates, to a huge improve-
ment if white noise is negligible and only the linear DC 
drift and some higher ordered drift terms are present.  

Changing the sequence of the input signal often requires 
very little effort; choosing the Thue-Morse Sequence can 
sometimes (but then, often to a high degree) minimize 
the disturbing factors, and thus increase accuracy and 
save (test) time and money. 

REFERENCES 

[1] J.P. Allouche and J. Shallit, “The ubiquitous Prouhet-Thue-
Morse sequence”, Sequences and Their Applications, 
Proceedings of  SETA, 1999 

[2] R. Ricklund, S. Mattias, L. Youran, “The Thue-Morse aperiodic 
crystal, a link between the Fibonacci quasicrystal and the 
periodic crystal”, International Journal of Modern Physics B, 
Volume 1, Issue 01, P. 121-132 (1987). 

[3] R. Yarlagadda and J. Hershey, “Counter synchronization using 
the Thue-Morse Sequence and PSK”, IEEE Transactions on 
communications. Volume 32, Issue 8, Aug 1984 P. 974 - 977 

[4] Journees d’informatique musicale, May 1998 (ISBN 2-909669-
12-2) 

[5]  L. Lin, K. Parthasarathy, T. Kuyel, R. Geiger and D. Chen, 
“High-performance ADC linearity test using low-precision 
signals in non-stationary environments” International Test 
Conference 2005, paper 46. 2. 

[6] L. Jin, K.  Parthasarathy, T. Kuyel, D. Chen and R. Geiger, 
“Accurate testing of analog-to-digital converters using low 
linearity signals with stimulus error identification and removal”, 
IEEE Trans. Instrum. Meas.,vol. 54, pp. 1188-1199, June 2005 


