The retinal vascular condition is a reliable biomarker of several ophthalmologic and cardiovascul... more The retinal vascular condition is a reliable biomarker of several ophthalmologic and cardiovascular diseases, so automatic vessel segmentation may be crucial to diagnose and monitor them. In this paper, we propose a novel method that combines the multiscale analysis provided by the Stationary Wavelet Transform with a multiscale Fully Convolutional Neural Network to cope with the varying width and direction of the vessel structure in the retina. Our proposal uses rotation operations as the basis of a joint strategy for both data augmentation and prediction, which allows us to explore the information learned during training to refine the segmentation. The method was evaluated on three publicly available databases, achieving an average accuracy of 0.9576, 0.9694, and 0.9653, and average area under the ROC curve of 0.9821, 0.9905, and 0.9855 on the DRIVE, STARE, and CHASE DB1 databases, respectively. It also appears to be robust to the training set and to the inter-rater variability, which shows its potential for real-world applications.
Gliomas are among the most aggressive and deadly brain tumors. This paper details the proposed De... more Gliomas are among the most aggressive and deadly brain tumors. This paper details the proposed Deep Neural Network architecture for brain tumor segmentation from Magnetic Resonance Images. The architecture consists of a cascade of three Deep Layer Aggregation neural networks, where each stage elaborates the response using the feature maps and the probabilities of the previous stage, and the MRI channels as inputs. The neuroimaging data are part of the publicly available Brain Tumor Segmentation (BraTS) 2020 challenge dataset, where we evaluated our proposal in the BraTS 2020 Validation and Test sets. In the Test set, the experimental results achieved a Dice score of 0.8858, 0.8297 and 0.7900, with an Hausdorff Distance of 5.32 mm, 22.32 mm and 20.44 mm for the whole tumor, core tumor and enhanced tumor, respectively.
Medical Image Computing and Computer Assisted Intervention – MICCAI 2018, 2018
Stroke is the second most common cause of death in developed countries, where rapid clinical inte... more Stroke is the second most common cause of death in developed countries, where rapid clinical intervention can have a major impact on a patient's life. To perform the revascularization procedure, the decision making of physicians considers its risks and benefits based on multi-modal MRI and clinical experience. Therefore, automatic prediction of the ischemic stroke lesion outcome has the potential to assist the physician towards a better stroke assessment and information about tissue outcome. Typically, automatic methods consider the information of the standard kinetic models of diffusion and perfusion MRI (e.g. Tmax, TTP, MTT, rCBF, rCBV) to perform lesion outcome prediction. In this work, we propose a deep learning method to fuse this information with an automated data selection of the raw 4D PWI image information, followed by a data-driven deeplearning modeling of the underlying blood flow hemodynamics. We demonstrate the ability of the proposed approach to improve prediction of tissue at risk before therapy, as compared to only using the standard clinical perfusion maps, hence suggesting on the potential benefits of the proposed data-driven raw perfusion data modelling approach.
Stroke is the second most common cause of death in developed countries. Rapid clinical assessment... more Stroke is the second most common cause of death in developed countries. Rapid clinical assessment and intervention have a major impact on preventing infarct growth and consequently on patients' quality of life. Clinical interventions aim to restore perfusion deficits via pharmaceutical or mechanical intervention. Regardless of which reperfusion procedure is used, clinicians need to consider the risks and benefits based on multi-modal neuroimaging studies, such as MRI scans, as well as their own clinical experience. This intricate decision-making process would benefit from an automatic prediction of the final infarct, which would provide a estimation of tissue that will probably infarct. This paper introduces a deep learning method to automatically predict ischemic stroke tissue outcome. The authors propose an end-to-end deep learning architecture that combines information from perfusion dynamic susceptibility MRI, alongside perfusion and diffusion parametric maps. We aim to automatically extract features from the raw perfusion DSC-MRI to further complement the information gleaned from standard parametric maps, and to overcome the loss of information that can occur during perfusion postprocessing. Combining both data types in a single architecture, with dedicated paths, we achieve competitive results when predicting the final stroke infarct core lesion in the publicly available ISLES 2017 dataset.
Fully Convolutional Networks have been achieving remarkable results in image semantic segmentatio... more Fully Convolutional Networks have been achieving remarkable results in image semantic segmentation, while being efficient. Such efficiency results from the capability of segmenting several voxels in a single forward pass. So, there is a direct spatial correspondence between a unit in a feature map and the voxel in the same location. In a convolutional layer, the kernel spans over all channels and extracts information from them. We observe that linear recombination of feature maps by increasing the number of channels followed by compression may enhance their discriminative power. Moreover, not all feature maps have the same relevance for the classes being predicted. In order to learn the inter-channel relationships and recalibrate the channels to suppress the less relevant ones, Squeeze and Excitation blocks were proposed in the context of image classification with Convolutional Neural Networks. However, this is not well adapted for segmentation with Fully Convolutional Networks since they segment several objects simultaneously, hence a feature map may contain relevant information only in some locations. In this paper, we propose recombination of features and a spatially adaptive recalibration block that is adapted for semantic segmentation with Fully Convolutional Networks-the SegSE block. Feature maps are recalibrated by considering the cross-channel information together with spatial relevance. Experimental results indicate that Recombination and Recalibration improve the results of a competitive baseline, and generalize across three different problems: brain tumor segmentation, stroke penumbra estimation, and ischemic stroke lesion outcome prediction. The obtained results are competitive or outperform the state of the art in the three applications.
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, 2016
The health and function of tissue rely on its vasculature network to provide reliable blood perfu... more The health and function of tissue rely on its vasculature network to provide reliable blood perfusion. Volumetric imaging approaches, such as multiphoton microscopy, are able to generate detailed 3D images of blood vessels that could contribute to our understanding of the role of vascular structure in normal physiology and in disease mechanisms. The segmentation of vessels, a core image analysis problem, is a bottleneck that has prevented the systematic comparison of 3D vascular architecture across experimental populations. We explored the use of convolutional neural networks to segment 3D vessels within volumetric in vivo images acquired by multiphoton microscopy. We evaluated different network architectures and machine learning techniques in the context of this segmentation problem. We show that our optimized convolutional neural network architecture with a customized loss function, which we call DeepVess, yielded a segmentation accuracy that was better than state-of-the-art methods, while also being orders of magnitude faster than the manual annotation. To explore the effects of aging and Alzheimer's disease on capillaries, we applied DeepVess to 3D images of cortical blood vessels in young and old mouse models of Alzheimer's disease and wild type littermates. We found little difference in the distribution of capillary diameter or tortuosity between these groups, but did note a decrease in the number of longer capillary segments (>75μm) in aged animals as compared to young, in both wild type and Alzheimer's disease mouse models.
Machine learning systems are achieving better performances at the cost of becoming increasingly c... more Machine learning systems are achieving better performances at the cost of becoming increasingly complex. However, because of that, they become less interpretable, which may cause some distrust by the end-user of the system. This is especially important as these systems are pervasively being introduced to critical domains, such as the medical field. Representation Learning techniques are general methods for automatic feature computation. Nevertheless, these techniques are regarded as uninterpretable "black boxes". In this paper, we propose a methodology to enhance the interpretability of automatically extracted machine learning features. The proposed system is composed of a Restricted Boltzmann Machine for unsupervised feature learning, and a Random Forest classifier, which are combined to jointly consider existing correlations between imaging data, features, and target variables. We define two levels of interpretation: global and local. The former is devoted to understandi...
Among brain tumors, gliomas are the most common and aggressive, leading to a very short life expe... more Among brain tumors, gliomas are the most common and aggressive, leading to a very short life expectancy in their highest grade. Thus, treatment planning is a key stage to improve the quality of life of oncological patients. Magnetic Resonance Imaging (MRI) is a widely used imaging technique to assess these tumors, but the large amount of data produced by MRI prevents manual segmentation in a reasonable time, limiting the use of precise quantitative measurements in the clinical practice. So, automatic and reliable segmentation methods are required; however, the large spatial and structural variability among brain tumors make automatic segmentation a challenging problem. In this paper, we propose an automatic segmentation method based on Convolutional Neural Networks (CNN), exploring small 33 kernels. The use of small kernels allows designing a deeper architecture, besides having a positive effect against overfitting, given the fewer number of weights in the network. We also investiga...
As artificial intelligence (AI) systems begin to make their way into clinical radiology practice,... more As artificial intelligence (AI) systems begin to make their way into clinical radiology practice, it is crucial to assure that they function correctly and that they gain the trust of experts. Toward this goal, approaches to make AI "interpretable" have gained attention to enhance the understanding of a machine learning algorithm, despite its complexity. This article aims to provide insights into the current state of the art of interpretability methods for radiology AI. This review discusses radiologists' opinions on the topic and suggests trends and challenges that need to be addressed to effectively streamline interpretability methods in clinical practice.
In age-related macular degeneration (AMD), the quantification of drusen is important because it i... more In age-related macular degeneration (AMD), the quantification of drusen is important because it is correlated with the evolution of the disease to an advanced stage. Therefore, we propose an algorithm based on a multi-surface framework for the segmentation of the limiting boundaries of drusen: the inner boundary of the retinal pigment epithelium + drusen complex (IRPEDC) and the Bruch's membrane (BM). Several segmentation methods have been considerably successful in segmenting retinal layers of healthy retinas in optical coherence tomography (OCT) images. These methods are successful because they incorporate prior information and regularization. Nonetheless, these factors tend to hinder the segmentation for diseased retinas. The proposed algorithm takes into account the presence of drusen and geographic atrophy (GA) related to AMD by excluding prior information and regularization just valid for healthy regions. However, even with this algorithm, prior information and regularizat...
Uploads
Papers by Carlos Silva