Integrated longitudinal and lateral guidance of vehicles in critical high speed manoeuvres
One of the most important and conventional manoeuvres, that is not easy to even skilled drivers, ... more One of the most important and conventional manoeuvres, that is not easy to even skilled drivers, is the high-speed critical lane change on the highways. The main contribution of this study is the development of an integrated longitudinal and lateral guidance algorithm for these manoeuvres. This algorithm consists of two parts: the trajectory planning and the integrated control. In the first part, taking into account the position of the target vehicle for different accelerations, several trajectories are produced. Next, considering the dynamic capabilities of the vehicle, the most appropriate trajectory is selected. Since the proposed trajectory planning approach works algebraically, its computational cost is negligible, which is very valuable for practical implementations. In the second step, using a robust-integrated longitudinal–lateral controller, the control inputs are calculated and transmitted to the brakes, throttle and steering actuators. It should be noted that the trajecto...
Trajectory planning and combined control design for critical high-speed lane change manoeuvres
The purpose of this research is to develop an advanced driver assistance system for the integrate... more The purpose of this research is to develop an advanced driver assistance system for the integrated longitudinal and lateral guidance of vehicles in critical high-speed lane change manoeuvres. The system consists of two parts: trajectory planning and combined control. At the first, by considering the TV position and the available range of longitudinal acceleration, several trajectories with different accelerations are generated. Then, by taking into account the vehicle and tyre dynamics, the most appropriate trajectory is selected. Therefore, the chosen trajectory is collision free and dynamically feasible. Because the trajectory planning is carried out algebraically, it has low computational cost. This is especially valuable in the experimental implementations. At the second part of the study, using a robust combined longitudinal-lateral controller, the control inputs are determined and transmitted to the brake/throttle and steering actuators. Both in the trajectory planning and com...
This paper presents a new intelligent approach for adaptive control of a nonlinear dynamic system... more This paper presents a new intelligent approach for adaptive control of a nonlinear dynamic system. A modified version of the brain emotional learning based intelligent controller (BELBIC), a bio-inspired algorithm based upon a computational model of emotional learning which occurs in the amygdala, is utilized for position controlling a real laboratorial rotary electro-hydraulic servo (EHS) system. EHS systems are known to be nonlinear and non-smooth due to many factors such as leakage, friction, hysteresis, null shift, saturation, dead zone, and especially fluid flow expression through the servo valve. The large value of these factors can easily influence the control performance in the presence of a poor design. In this paper, a mathematical model of the EHS system is derived, and then the parameters of the model are identified using the recursive least squares method. In the next step, a BELBIC is designed based on this dynamic model and utilized to control the real laboratorial EHS system. To prove the effectiveness of the modified BELBIC's online learning ability in reducing the overall tracking error, results have been compared to those obtained from an optimal PID controller, an auto-tuned fuzzy PI controller (ATFPIC), and a neural network predictive controller (NNPC) under similar circumstances. The results demonstrate not only excellent improvement in control action, but also less energy consumption.
Uploads
Papers by Hadi Sazgar