Papers by Kamila Jankowska

Electronics
In this paper, a current sensor fault detection mechanism based on multilayer perceptron (MLP) in... more In this paper, a current sensor fault detection mechanism based on multilayer perceptron (MLP) in a permanent magnet synchronous motor (PMSM) drive system is presented. The solution for the PMSM was previously described and tested only in simulation studies. The described application allows the detection of basic faults (lack of signal, gain error, signal noise) in current sensors and the indication of the phase (A or B) in which the fault occurred. The work is focused on the analysis of the fault detector but also presents the possibilities of their classification. The work mainly presents experimental research for different values of speed during the load and regenerative mode. In addition to the study of various operating conditions of the drive system, the detector efficiency was also verified for three neural structures with a different number of neurons in the hidden layers. The work also presents simulation tests (in Matlab Simulink software) for the additional conditions of ...

Power Electronics and Drives
The article discusses the universal current sensor fault detection and compensation mechanism, wh... more The article discusses the universal current sensor fault detection and compensation mechanism, which can be applied in three-phase power electronics (PE) symmetrical system. The mechanism is based on the assumption that a symmetrical system can be described using different components in the stationary reference frame. The solution given in article as a Cri-base detector was tested in electrical drives with induction motors (IMs) and permanent magnet synchronous motors (PMSMs). This study also proves that the same algorithm can work stable in active rectifier systems. Such an application of this detector has not been previously reported in the literature. The article describes the detection of various types of faults in different phases. The fault-tolerant voltage-oriented control (FTVOC) of an active rectifier is compared with previously described solutions for IMs and PMSMs. By analysing in various types of systems, the work proves the universality of the detector based on Cri mark...

Energies, 2021
The paper describes a vector-controlled fault tolerant control (FTC) structure for permanent magn... more The paper describes a vector-controlled fault tolerant control (FTC) structure for permanent magnet synchronous motor (PMSM) drives. As a control algorithm, the classical field oriented control was applied. For the proper operation of this drive, minimum two current sensors are necessary, however, in the FTC drives additional redundant transducers are applied. Each measuring sensor, including current sensors, are susceptible to damage and can lead to unstable operation of the drive. The presented control structure, with a diagnostic and compensation system, is robust to the typical current sensor faults—lack of signal, intermittent signal, variable gain, signal noise and signal saturation. The fault detection algorithm is based on the signal method. The fault diagnostic system is tested in two control algorithms—the scalar control and vector control ones—to demonstrate the transient of the faulted signals, detection signals and detection time. After current sensor fault appearance, ...
Applied Sciences
In this paper the current sensor fault detector for the permanent-magnet synchronous motor drive ... more In this paper the current sensor fault detector for the permanent-magnet synchronous motor drive system has been presented. The solution is a known method used for induction motor drive systems, tested by authors in simulation for the PMSM drive system. The application is based on the current markers, which enable not only failure detection, but also the location of said failures. Detector operation is based only on the analysis of measurements from current sensors and does not require additional information about other state variables. The aim of the work is to present simulation and experimental studies in field-oriented control (FOC) for the tested current sensor fault detector for various operating conditions of the drive system—variable speed and load.

Designs, 2022
This paper describes a vector-controlled Permanent Magnet Synchronous Motor (PMSM) drive system w... more This paper describes a vector-controlled Permanent Magnet Synchronous Motor (PMSM) drive system with the current sensor fault detection mechanism. In general, the control structure is based on the well-known Field Oriented Control (FOC) algorithm. The structure is equipped with an additional algorithm for current sensor fault detection based on a neural network. The presented control structure is able to detect typical current sensor faults, such as lack of signal, intermittent signal, variable gain and signal noise. The application of the NN detector guarantees a faster detection of the sensor fault than classical detectors based on algorithmic methods or logical systems. This work focuses on presenting the methodology of designing detectors and their analysis, based solely on simulation analysis. The simulation results, conducted in the Matlab/Simulink environment, are presented for the above-mentioned faults in phase A and phase B for different speed conditions.

Permanent magnet synchronous motors (PMSMs) are becoming more popular, both in industrial applica... more Permanent magnet synchronous motors (PMSMs) are becoming more popular, both in industrial applications and in electric and hybrid vehicle drives. Unfortunately, like the others, these are not reliable drives. As in the drive systems with induction motors, the rolling bearings can often fail. This paper focuses on the possibility of detecting this type of mechanical damage by analysing mechanical vibrations supported by shallow neural networks (NNs). For the extraction of diagnostic symptoms, the Fast Fourier Transform (FFT) and the Hilbert transform (HT) were used to obtain the envelope signal, which was subjected to the FFT analysis. Three types of neural networks were tested to automate the detection process: multilayer perceptron (MLP), neural network with radial base function (RBF), and Kohonen map (self-organizing map, SOM). The input signals of these networks were the amplitudes of harmonic components characteristic of damage to bearing elements, obtained as a result of FFT or...

Power Electronics and Drives
Due to their many advantages, permanent magnet synchronous motors (PMSMs) are increasingly used i... more Due to their many advantages, permanent magnet synchronous motors (PMSMs) are increasingly used in not only industrial drive systems but also electric and hybrid vehicle drives, aviation and other applications. Unfortunately, PMSMs are not free from damage that occurs during their operation. It is assumed that about 40% of the damage that occurs is related to rolling bearing damage. This article focuses on the use of Kohonen neural network (KNN) for rolling bearing damage detection in a PMSM drive system. The symptoms from the fast Fourier transform (FFT) and Envelope (ENV) Analysis of the mechanical vibration acceleration signal were analysed. The signal ENV was obtained by applying the Hilbert transform (HT). Two neural network functions are discussed: a detector and a classifier. The detector detected the damage and the classifier determined the type of damage to the rolling bearing (undamaged bearing, damaged rolling element, outer or inner race). The effectiveness of the analys...

Energies, 2021
The paper describes a vector-controlled fault tolerant control (FTC) structure for permanent magn... more The paper describes a vector-controlled fault tolerant control (FTC) structure for permanent magnet synchronous motor (PMSM) drives. As a control algorithm, the classical field oriented control was applied. For the proper operation of this drive, minimum two current sensors are necessary, however, in the FTC drives additional redundant transducers are applied. Each measuring sensor, including current sensors, are susceptible to damage and can lead to unstable operation of the drive. The presented control structure, with a diagnostic and compensation system, is robust to the typical current sensor faults—lack of signal, intermittent signal, variable gain, signal noise and signal saturation. The fault detection algorithm is based on the signal method. The fault diagnostic system is tested in two control algorithms—the scalar control and vector control ones—to demonstrate the transient of the faulted signals, detection signals and detection time. After current sensor fault appearance, ...
Uploads
Papers by Kamila Jankowska