
Math 55a: Honors Advanced Calculus and Linear Algebra

Metric topology VI: Cauchy sequences, completeness,
and a third formulation of compactness

Cauchy sequences and total boundedness. [See Rudin, p.52 ff.] We
noted already that convergence of sequences is not an intrinsic notion: {2−n} =
1/2, 1/4, 1/8, . . . converges as a sequence in R but not in (0, 1). A closely related
notion which is intrinsic is that of a Cauchy sequence. A sequence {pn} in a
metric space X is Cauchy if for every ε > 0 there is an integer N such that
d(pm, pn) < ε for all m,n ≥ N . (This can be rephrased as “d(pm, pn) → 0 as
m,n→∞ independently.”) This notion is intrinsic because it does not require
a limit point p whose existence may depend on the choice of ambient space.
However, any convergent sequence is Cauchy [Rudin, 3.11a, p.53]: if pn → p,
and d(pn, p) < 1

2ε for all n ≥ N , then d(pm, pn) < ε for all m,n ≥ N by the
triangle inequality.

Recall that X is said to be totally bounded if it has an ε-net for each ε > 0. We
have:

Theorem. X is totally bounded if and only if every sequence in X has a Cauchy
subsequence.

Proof : (⇐) [This argument should look familiar.] We may assume X 6= ∅.
Given ε > 0, we inductively construct an ε-net {p1, . . . , pN} as follows. Choose
p1 arbitrarily. Having chosen p1, . . . , pn, if {p1, . . . , pn} is not yet an ε-net, let
pn+1 be a point such that d(pm, pn+1) ≥ ε for each m = 1, . . . , n. We claim that
this process must terminate. Indeed, if it didn’t, we would obtain a sequence
{pn}∞n=1 any two of whose points are at distance ≥ ε from each other; but such
a sequence clearly has no Cauchy subsequence.

(⇒) Let Sk be a (1/2k)-net for k = 1, 2, 3, . . . Given a sequence {pn} in X,
extract a subsequence {q(1)

n } contained in a radius-(1/2) neighborhood about
one of the points in S1. From {q(1)

n } extract a subsequence {q(2)
n } contained

in a radius-(1/4) neighborhood about one of the points in S2. Keep going
inductively: {q(k)

n } is a subsequence of {q(k−1)
n } contained in a radius-(1/2k)

neighborhood about one of the points in Sk. This is possible because for each k
the sequence {q(k−1)

n } is infinite while Sk is finite. Note that d(q(k)
n , q

(k)
n′ ) <

1/k for all k, n, n′. Now consider the diagonal subsequence {q(k)
k }. This is a

subsequence of the original {pn}; moreover, if m,n ≥ N then q
(m)
m and q

(n)
n

are both contained in the subsequence {q(N)
n }, and thus are at distance < 1/N .

Thus {q(k)
k } is a Cauchy subsequence of {pn}. 2

Completeness and Compactness. A metric space X is said to be complete
if every Cauchy sequence in X converges in X. If X,Y are nonempty metric
spaces then X × Y is complete if and only if X and Y are complete. Similarly,
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if S is a nonempty set then B(S, Y ) is complete if and only if Y is. If X is
complete, then a subset E ⊆ X is complete if and only if it is closed. Indeed we
have seen that E is closed iff, for every sequence {pn} in E converging to some
p ∈ X, its limit p is also contained in E. But by hypothesis {pn} converges in X
if and only if it is Cauchy — and since that’s an intrinsic notion, {pn} is Cauchy
in X if and only if it is Cauchy in E. So, E is closed iff every Cauchy sequence
in E converges in E, which is precisely the condition for E to be complete. As a
corollary, if Y is complete and X is any topological space, C(X,Y ) is complete,
because we have already seen that it is closed as a subset of B(X,Y ).

It is a fundamental fact that R is complete — from which it follows that Rk

(k = 1, 2, 3, . . .), and any closed subset of Rk, is complete. Moreover, any
bounded subset of Rk is totally bounded, because such a set is contained in
some NM (x), and the set of y ∈ NM (x) such that each coordinate of y − x is
in εZ is an ε-net for each ε > 0. [Note that we’re implicitly using the result of
Problem 7 in the third homework set here: if E ⊆ X is totally bounded relative
to X, then E is totally bounded.] This, together with our above characterization
of totally bounded sets, yields the Heine-Borel Theorem [Rudin, p.39–40]: A
subset of Rk is compact if and only if it is closed and bounded. More generally,
we have our third equivalent definition of compactness, in the context of subsets
of a complete metric space:

Theorem. A subset of a complete metric space is compact if and only if it is
closed and totally bounded.

Proof : Given our work thus far we need only show that a sequentially compact
metric space is complete. But if {pn} is a Cauchy sequence then the limit of
any convergent subsequence is also the limit of the entire sequence. 2

Applications to continuous functions. We noted already that the continu-
ous image of a compact set is compact. In particular it is bounded and closed.
So, for instance, if X is compact and Y is any metric space then C(X,Y ) con-
sists simply of all continuous functions f : X → Y , since any such function is
automatically bounded. In the important special case Y = R, we have seen
that bounded closed sets contain their sup and inf; so, for instance, any contin-
uous real-valued function on a nonempty compact space attains its supremum
and infimum. We shall use this repeatedly to prove many results from Rolle’s
theorem (which undergirds the entire theory of Taylor expansions) to the spec-
tral theorem for Hermitian operators on finite-dimensional inner product spaces.
Going in another direction, for any f, g ∈ C(X,Y ) we may consider the contin-
uous function x 7→ d(f(x), g(x)) to show that when X is compact the distance
in C(X,Y ) is given by d(f, g) = maxx∈X d(f(x), g(x)) [NB the usual sup, to
substitute for max when X is infinite, is not needed in the compact case].

If X,Y are metric spaces with X compact then any continuous f : X → Y is
uniformly continuous. Indeed, given ε > 0 the preimages of (ε/2)-neighborhoods
in Y constitute an open cover of X, which has a Lebesgue number δ > 0 by
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the last problem on the third homework set (the Lebesgue covering lemma).
Thus each f(Nδ(x)) (x ∈ X) is contained in some Nε/2(y), so d(x, x′) < δ ⇒
d(f(x), f(x′)) < ε as claimed.

Completions. How did we know in the first place that R is complete? The an-
swer to that depends on how you define the real numbers — various approaches
make this result a theorem, an axiom, or even a definition. [For further details,
see Rudin, Chapter 1, and further references such as given in Rudin, p.21.] If you
believe in sup and inf, you can obtain the limit of a real Cauchy sequence {pn}
as either lim sup pn or lim inf pn, these being defined for any bounded sequence
of sn ∈ R by

lim sup pn :=
∞
inf
n=1

(
sup
m≥n

sm

)
, lim inf pn :=

∞
sup
n=1

(
inf
m≥n

sm

)
.

(Note that the sequences {supm≥n sm}∞n=1 and {infm≥n sm}∞n=1 are monotoni-
cally decreasing and increasing respectively — see [Rudin, p.55] for the definition
if necessary.)

One nice approach is to obtain R as a “completion” of Q. This approach
is implicit in writing an arbitrary real number as a possibly nonterminating
decimal, with an ambiguity in cases such as 54.9999 . . . = 55.0000 . . .. Once
this is done, it can be generalized by the following important construction.
[See Rudin, Exercise 24 on p.82.] To any metric space X we associate its
completion, which is a complete metric space X∗ in which X is embedded
isometrically as a dense subset. We construct X∗ out of Cauchy sequences in X.
For any two such sequences {pn}, {qn}, the sequence {dn} := {d(pn, qn)} in
R is Cauchy, and thus has a limit, which we call the “distance” between {pn}
and {qn}. This “distance” satisfies all the axioms of a distance function, except
that d({pn}, {qn}) = 0 need not imply {pn} = {qn}. But, as a special case of
Problem 5 of the first homework set, we get a genuine metric space by identifying
any Cauchy sequences at distance 0 from each other. The resulting space is the
completion X∗; it contains an isometric copy of X consisting of the equivalence
classes of constant sequences x, x, x, . . .. It is easy to see that this copy of X
is dense in X∗. The only tricky thing to prove is that X∗ is in fact complete:
we must show that X∗ contains limits of Cauchy sequences not only in X,
but also in X∗. Suppose {x∗n} is such a Cauchy sequence. We find a Cauchy
sequence in X whose limit in X∗ is also the limit of {x∗n}. For k = 1, 2, 3, . . .
choose Nk so that d(x∗m, x

∗
n) < 1/k for all m,n ≥ Nk. Let xk ∈ X be chosen

so d(xk, x
∗
Nk

) < 1/k. One readily checks that {xk} is a Cauchy sequence at
distance zero from {x∗n}.

[This proof may also be viewed as a disguised “diagonal argument”. Say that
{xi} is a “fast Cauchy sequence” if d(xm, xn) < 1/N whenever m,n > N .
Clearly every Cauchy sequence has a fast subsequence. In particularly, each
x∗ ∈ X∗ is represented by a fast Cauchy sequence in X. Now suppose {x∗n}
is a Cauchy sequence in X∗. For each n, choose a representative fast Cauchy
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sequence {xn,i}∞i=1. We claim: the diagonal sequence {xn,n}∞n=1 is a (not neces-
sarily fast) Cauchy sequence in X whose limit is also the limit of {x∗n}. To show
that it’s Cauchy we argue in much the same way that we proved the continuity
of a uniform limit of continuous functions. For large enough N , we have

d(xm,m, xn,n) ≤ 1
m

+
1
n

+ d(x∗m, x
∗
n) <

2
N

+ d(x∗m, x
∗
n)

for all m,n > N . Now choose N large enough that 1/N < ε/3 and that
d(x∗m, x

∗
n) < ε/3 for all m,n > N . Then d(xm,m, xn,n) < ε. Now the distance

between the Cauchy sequences {xn,n} and {x∗n} vanishes1 because d(xn,n, x∗n) ≤
1/n. Hence they have the same limit. We have thus exhibited a limit of an
arbitrary Cauchy sequence in X∗, completing the proof that X∗ is complete.]

For instance, R is the completion of Q, and [0, 1] is the completion of (0, 1).
More generally, if X is already complete and E is any subset of X then the
completion of E is naturally identified with the closure of E in X.

Example: N-adic numbers. There are other nice spaces that can be obtained by

completing Q relative to a more exotic metric. For instance, suppose we say that two

rational numbers r, r′ are close to each other if their decimal expansions agree to many

places to the left of the decimal point; more precisely, we define the “10-adic metric”

d10 on Q as follows: if r 6= r′ we declare d10(r, r′) = 10−e where r − r′ = 10em/n for

some integers m,n with n relatively prime to m as well as to 10. Of course d10(r, r) = 0

for all r. One easily verifies that this is in fact a metric on Q, and indeed satisfies

not only the triangle inequality but the stronger “nonarchimedean triangle inequality”

d(p, q) ≤ max(d(p, r), d(q, r)). For instance, with this metric Euler’s nonsensical series

1! − 2! + 3! − 4! + − · · · actually converges (while the usual series
∑∞
n=1 1/n! for e

badly diverges). Completing Q relative to d10 yields the “10-adic numbers” Q10. Of

course there is nothing special about 10 here: one can likewise define N -adic numbers

for any fixed integer N > 1. In fact the nicest case is dN for N prime: one can add,

subtract, and divide in QN for all N , just as one does in R, but one can only divide

by arbitrary nonzero numbers if N is prime — do you see why? The N -adic numbers

may appear to be a pathological curiosity (e.g. for each N they have the topology of a

countable union of disjoint Cantor sets), and indeed they were originally constructed

as an amusement; but N -adic numbers and generalizations thereof are now ubiquitous

tools in number theory and algebraic geometry.

1In mathematical writing “x vanishes” is a synonym for “x = 0”.
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