Sidoretti et al., 2025 - Google Patents

DIDA: Distributed In-Network Intelligent Data Plane for Machine Learning Applications

Sidoretti et al., 2025

Document ID
13428559101051101589
Author
Sidoretti G
Bracciale L
Salsano S
Elbakoury H
Loreti P
Publication year
Publication venue
IEEE Transactions on Network and Service Management

External Links

Snippet

Recent advances in network switch designs have enabled machine learning inference directly within the switch at line speed. However, hardware constraints limit switches capabilities of tracking stateful features essential for accurate inference, as the demand for …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/14Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
    • H04L63/1441Countermeasures against malicious traffic
    • H04L63/1458Denial of Service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/14Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
    • H04L63/1408Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic by monitoring network traffic
    • H04L63/1425Traffic logging, e.g. anomaly detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/14Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
    • H04L63/1408Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic by monitoring network traffic
    • H04L63/1416Event detection, e.g. attack signature detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing packet switching networks
    • H04L43/02Arrangements for monitoring or testing packet switching networks involving a reduction of monitoring data
    • H04L43/026Arrangements for monitoring or testing packet switching networks involving a reduction of monitoring data using flow generation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic regulation in packet switching networks
    • H04L47/10Flow control or congestion control
    • H04L47/24Flow control or congestion control depending on the type of traffic, e.g. priority or quality of service [QoS]
    • H04L47/2441Flow classification
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/02Network architectures or network communication protocols for network security for separating internal from external traffic, e.g. firewalls
    • H04L63/0209Architectural arrangements, e.g. perimeter networks or demilitarized zones
    • H04L63/0218Distributed architectures, e.g. distributed firewalls
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/26Monitoring arrangements; Testing arrangements
    • H04L12/2602Monitoring arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/02Network architectures or network communication protocols for network security for separating internal from external traffic, e.g. firewalls
    • H04L63/0227Filtering policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing packet switching networks
    • H04L43/08Monitoring based on specific metrics
    • H04L43/0876Network utilization
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance or administration or management of packet switching networks
    • H04L41/14Arrangements for maintenance or administration or management of packet switching networks involving network analysis or design, e.g. simulation, network model or planning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Application independent communication protocol aspects or techniques in packet data networks
    • H04L69/22Header parsing or analysis
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network-specific arrangements or communication protocols supporting networked applications
    • H04L67/10Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance or administration or management of packet switching networks
    • H04L41/02Arrangements for maintenance or administration or management of packet switching networks involving integration or standardization
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for programme control, e.g. control unit
    • G06F9/06Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
    • G06F9/46Multiprogramming arrangements

Similar Documents

Publication Publication Date Title
Varghese et al. An efficient IDS framework for DDoS attacks in SDN environment
Santos et al. Machine learning algorithms to detect DDoS attacks in SDN
Krishnan et al. OpenStackDP: a scalable network security framework for SDN-based OpenStack cloud infrastructure
Gao et al. Detection and mitigation of DoS attacks in software defined networks
Amaral et al. Machine learning in software defined networks: Data collection and traffic classification
Mousavi et al. Early detection of DDoS attacks against software defined network controllers
Boite et al. Statesec: Stateful monitoring for DDoS protection in software defined networks
Jeya et al. Efficient classifier for R2L and U2R attacks
Cheng et al. Machine learning based low-rate DDoS attack detection for SDN enabled IoT networks
Tayfour et al. Collaborative detection and mitigation of DDoS in software-defined networks
Swami et al. Detection and analysis of TCP-SYN DDoS attack in software-defined networking
Chaudhary et al. LOADS: Load optimization and anomaly detection scheme for software-defined networks
WO2013053407A1 (en) A method and a system to detect malicious software
Batool et al. [Retracted] Lightweight Statistical Approach towards TCP SYN Flood DDoS Attack Detection and Mitigation in SDN Environment
KR20150105436A (en) An improved streaming method and system for processing network metadata
Eliyan et al. Demi: a solution to detect and mitigate DoS attacks in SDN
Dang-Van et al. A multi-criteria based software defined networking system Architecture for DDoS-attack mitigation
Singh Machine learning in openflow network: comparative analysis of DDoS detection techniques.
Unal et al. Towards prediction of security attacks on software defined networks: A big data analytic approach
Sumadi et al. Comparative analysis of DDoS detection techniques based on machine learning in openflow network
Mateus et al. Federated learning-based solution for DDoS detection in SDN
Tang et al. PeakSAX: Real-time monitoring and mitigation system for LDoS attack in SDN
Anand et al. Securing software defined networks: A comprehensive analysis of approaches, applications, and future strategies against DoS attacks
Bencheikh Lehocine et al. Preprocessing-based approach for prompt intrusion detection in SDN networks
Kareem et al. Machine learning-based DDoS attack detection in software-defined networking