Papers by Abdulrajak Buradi
Background: Local hemodynamics plays an important role in atherogenesis and the progression of co... more Background: Local hemodynamics plays an important role in atherogenesis and the progression of coronary atherosclerosis disease (CAD). The primary biological effect due to blood turbulence is the change in wall shear stress (WSS) on the endothelial cell membrane, while the local oscillatory nature of the blood flow affects the physiological changes in the coronary artery. In coronary arteries, the blood flow Reynolds number ranges from few tens to several hundreds and hence it is generally assumed to be laminar while calculating the WSS calculations. However, the pulsatile blood flow through coronary arteries under stenotic condition could result in transition from laminar to turbulent flow condition.

In large blood vessels, migration of red blood cells (RBCs) affects the concentration of platelet... more In large blood vessels, migration of red blood cells (RBCs) affects the concentration of platelets and the transport of oxygen to the arterial endothelial cells. In this work, we investigate the locations where hydrodynamic diffusion of RBCs occurs and the effects of stenosis severity on shear-induced diffusion (SID) of RBCs, concentration distribution and wall shear stress (WSS). For the first time, multiphase mixture theory approach with Phillips shear-induced diffusive flux model coupled with Quemada non-Newtonian viscosity model has been applied to numerically simulate the RBCs macroscopic behavior in four different degrees of stenosis (DOS) geometries, viz., 30%, 50%, 70% and 85%. Considering SID of RBCs, the calculated average WSS increased by 77.70% which emphasises the importance of SID in predicting hemodynamic parameters. At the stenosis throat, it was observed that 85% DOS model had the lowest concentration of RBCs near the wall and highest concentration at the center. For the stenosis models with 70% and 85% DOS, the RBC lumen wall concentration at the distal section of stenosis becomes inhomogeneous with the maximum fluctuation of 1.568%. Finally, the wall regions with low WSS and low RBC concentrations correlate well with the athero-sclerosis sites observed clinically.
Background: Local hemodynamics plays an important role in atherogenesis and the progression of co... more Background: Local hemodynamics plays an important role in atherogenesis and the progression of coronary atherosclerosis disease (CAD). The primary biological effect due to blood turbulence is the change in wall shear stress (WSS) on the endothelial cell membrane, while the local oscillatory nature of the blood flow affects the physiological changes in the coronary artery. In coronary arteries, the blood flow Reynolds number ranges from few tens to several hundreds and hence it is generally assumed to be laminar while calculating the WSS calculations. However, the pulsatile blood flow through coronary arteries under stenotic condition could result in transition from laminar to turbulent flow condition.

In large blood vessels, migration of red blood cells (RBCs) affects the concentration of platelet... more In large blood vessels, migration of red blood cells (RBCs) affects the concentration of platelets and the transport of oxygen to the arterial endothelial cells. In this work, we investigate the locations where hydrodynamic diffusion of RBCs occurs and the effects of stenosis severity on shear-induced diffusion (SID) of RBCs, concentration distribution and wall shear stress (WSS). For the first time, multiphase mixture theory approach with Phillips shear-induced diffusive flux model coupled with Quemada non-Newtonian viscosity model has been applied to numerically simulate the RBCs macroscopic behavior in four different degrees of stenosis (DOS) geometries, viz., 30%, 50%, 70% and 85%. Considering SID of RBCs, the calculated average WSS increased by 77.70% which emphasises the importance of SID in predicting hemodynamic parameters. At the stenosis throat, it was observed that 85% DOS model had the lowest concentration of RBCs near the wall and highest concentration at the center. For the stenosis models with 70% and 85% DOS, the RBC lumen wall concentration at the distal section of stenosis becomes inhomogeneous with the maximum fluctuation of 1.568%. Finally, the wall regions with low WSS and low RBC concentrations correlate well with the atherosclerosis sites observed clinically.
Uploads
Papers by Abdulrajak Buradi