Outlier detection is a fundamental issue in data mining, specifically it has been used to detect ... more Outlier detection is a fundamental issue in data mining, specifically it has been used to detect and remove anomalous objects from data. Outliers arise due to mechanical faults, changes in system behaviour, fraudulent behaviour, network intrusions or human errors. Firstly, this thesis presents a theoretical overview of outlier detection approaches. A novel outlier detection method is proposed and analyzed, it is called Clustering Outlier Removal (COR) algorithm. It provides efficient outlier detection and data clustering capabilities in the presence of outliers, and based on filtering of the data after clustering process. The algorithm of our outlier detection method is divided into two stages. The first stage provides k-means process. The main objective of the second stage is an iterative removal of objects, which are far away from their cluster centroids. The removal occurs according to a chosen threshold. Finally, we provide experimental results from the application of our algori...
Uploads
Papers by sudheer kotha