Papers by abdallah abdelsattar

Pharmaceutics
Wound healing has grown to be a significant problem at a global scale. The lack of multifunctiona... more Wound healing has grown to be a significant problem at a global scale. The lack of multifunctionality in most wound dressing-based biopolymers prevents them from meeting all clinical requirements. Therefore, a multifunctional biopolymer-based tri-layered hierarchically nanofibrous scaffold in wound dressing can contribute to skin regeneration. In this study, a multifunctional antibacterial biopolymer-based tri-layered hierarchically nanofibrous scaffold comprising three layers was constructed. The bottom and the top layers contain hydrophilic silk fibroin (SF) and fish skin collagen (COL), respectively, for accelerated healing, interspersed with a middle layer of hydrophobic poly-3-hydroxybutyrate (PHB) containing amoxicillin (AMX) as an antibacterial drug. The advantageous physicochemical properties of the nanofibrous scaffold were estimated by SEM, FTIR, fluid uptake, contact angle, porosity, and mechanical properties. Moreover, the in vitro cytotoxicity and cell healing were asse...
Viruses, Mar 31, 2023
This article is an open access article distributed under the terms and conditions of the Creative... more This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY

Virology Journal
Background Bacteriophages (phages) are one of the most promising alternatives to traditional anti... more Background Bacteriophages (phages) are one of the most promising alternatives to traditional antibiotic therapies, especially against multidrug-resistant bacteria. Klebsiella pneumoniae is considered to be an opportunistic pathogen that can cause life-threatening infections. Thus, this study aims at the characterization of a novel isolated phage vB_Kpn_ZC2 (ZCKP2, for short). Methods The phage ZCKP2 was isolated from sewage water by using the clinical isolate KP/08 as a host strain. The isolated bacteriophage was purified and amplified, followed by testing of its molecular weight using Pulse-Field Gel Electrophoresis (PFGE), transmission electron microscopy, antibacterial activity against a panel of other Klebsiella pneumoniae hosts, stability studies, and whole genome sequencing. Results Phage ZCKP2 belongs morphologically to siphoviruses as indicated from the Transmission Electron Microscopy microgram. The Pulsed Field Gel Electrophoresis and the phage sequencing estimated the pha...
Isolation, screening and characterization of phage
Progress in Molecular Biology and Translational Science
Carbohydrate ligands-directed active tumor targeting of combinatorial chemotherapy/phototherapy-based nanomedicine: A review
International Journal of Biological Macromolecules
The synergistic effect of using bacteriophages and chitosan nanoparticles against pathogenic bacteria as a novel therapeutic approach
International Journal of Biological Macromolecules
Characterization of the biosynthesized Syzygium aromaticum-mediated silver nanoparticles and its antibacterial and antibiofilm activity in combination with bacteriophage
Results in Chemistry
The green production of eco-friendly silver with cobalt ferrite nanocomposite using Citrus limon extract
Results in Chemistry

Journal of Inorganic and Organometallic Polymers and Materials
Zinc nanoparticles (ZnNPs) are showing promising medical applications. However, their cytotoxicit... more Zinc nanoparticles (ZnNPs) are showing promising medical applications. However, their cytotoxicity is relatively high. This study aims to use a green synthesis technique based on the natural propolis (honeybees glue) and produce three counterparts of Zinc nanoparticles (ZnO-NPs, AuNPs@ZnO and AgNPs@ZnO). Then, the three would be analyzed for their potential antibacterial activity and cytotoxicity. The study compares the antibacterial activity and cytotoxicity of ZnO-NPs alone to its combination with gold and silver (AuNPs@ZnO and AgNPs@ZnO). The results showed that AgNPs@ZnO had contributed significantly to antibacterial activity against Gram-positive and Gram-negative bacteria. Moreover, AuNPs@ZnO and AgNPs@ZnO showed similar cytotoxicity to ZnO-NPs with higher safety. Furthermore, the Scanning and Transmission Electron Microscopes’ micrographs (SEM and TEM) displayed the biosynthesized ZnNPs that have a spherical shape with sizes ranging from 17 to 70 nm, from 45 to 75 nm, and fro...

Journal of Genetic Engineering and Biotechnology
Background Antibiotic-resistant Pseudomonas aeruginosa (P. aeruginosa) is one of the most critica... more Background Antibiotic-resistant Pseudomonas aeruginosa (P. aeruginosa) is one of the most critical pathogens in wound infections, causing high mortality and morbidity in severe cases. However, bacteriophage therapy is a potential alternative to antibiotics against P. aeruginosa. Therefore, this study aimed to isolate a novel phage targeting P. aeruginosa and examine its efficacy in vitro and in vivo. Results The morphometric and genomic analyses revealed that ZCPA1 belongs to the Siphoviridae family and could infect 58% of the tested antibiotic-resistant P. aeruginosa clinical isolates. The phage ZCPA1 exhibited thermal stability at 37 °C, and then, it decreased gradually at 50 °C and 60 °C. At the same time, it dropped significantly at 70 °C, and the phage was undetectable at 80 °C. Moreover, the phage ZCPA1 exhibited no significant titer reduction at a wide range of pH values (4–10) with maximum activity at pH 7. In addition, it was stable for 45 min under UV light with one log re...
Biosynthesis of gold nanoparticles using ethanolic propolis extract for methylene blue and Rhodamine-B removal
Materials Letters

AMB Express
Antimicrobial alternatives such as nanoparticles are critically required to tackle bacterial infe... more Antimicrobial alternatives such as nanoparticles are critically required to tackle bacterial infections, especially with the emerging threat of antibiotic resistance. Therefore, this study aimed to biosynthesize Au–Ag nanoparticles using propolis as a natural reducing agent and investigate their antibacterial activity against antibiotic-resistant Staphylococcus sciuri (S. sciuri), Pseudomonas aeruginosa (P. aeruginosa), and Salmonella enterica Typhimurium (S. enterica), besides demonstrating their anticancer activity in cancer cell lines. The biosynthesized Au@AgNPs were characterized using UV–Vis spectrophotometer, Transmission Electron Microscopy (TEM), Zeta potential, Dynamic Light Scattering (DLS), Fourier Transformation Infrared (FTIR), and Scanning Electron Microscopy (SEM). Moreover, the detection of antibacterial activity was assessed through disc diffusion, the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC), time-killing curve, and detec...
Colloids and Surfaces B: Biointerfaces, 2018
Highlights Heinrich Hofmann: personal considerations, mostly not published. Cells: Effects wi... more Highlights Heinrich Hofmann: personal considerations, mostly not published. Cells: Effects with time after the exposure to nanoparticles. Biological systems: Interactions of nanoparticles. Internal blood-tissue barriers: penetration of nanoparticles into organ tissue. Environment: Effect on organs via nanpoparticles (epigenetics).
Utilization of Ocimum basilicum extracts for zinc oxide nanoparticles synthesis and their antibacterial activity after a novel combination with phage
Materials Letters
Enhancement of wound healing via topical application of natural products: in vitro and in vivo evaluations
Arabian Journal of Chemistry, Mar 1, 2022
In vitro bacteriophage-mediated synthesis of silver nanoparticles for antibacterial applications and heavy metal detection
Materials Letters

AMB Express, 2019
Bacteriophages can be used successfully to treat pathogenic bacteria in the food chain including ... more Bacteriophages can be used successfully to treat pathogenic bacteria in the food chain including zoonotic pathogens that colonize the intestines of farm animals. However, harsh gastric conditions of low pH and digestive enzyme activities affect phage viability, and accordingly reduce their effectiveness. We report the development of a natural protective barrier suitable for oral administration to farm animals that confers acid stability before functional release of bead-encapsulated phages. Escherichia coli bacteriophage ZSEC5 is rendered inactive at pH 2.0 but encapsulation in chitosan-alginate bead with a honey and gelatin matrix limited titer reductions to 1 log 10 PFU mL −1. The encapsulated phage titers were stable upon storage in water but achieved near complete release over 4-5 h in a simulated intestinal solution (0.1% bile salt, 0.4% pancreatin, 50 mM KH 2 PO 4 pH 7.5) at 37 °C. Exposure of E. coli O157:H7 to the bead-encapsulated phage preparations produced a delayed response, reaching a maximal reductions of 4.2 to 4.8 log 10 CFU mL −1 after 10 h at 37 °C under simulated intestinal conditions compared to a maximal reduction of 5.1 log 10 CFU mL −1 at 3 h for free phage applied at MOI = 1. Bead-encapsulation is a promising reliable and cost-effective method for the functional delivery of bacteriophage targeting intestinal bacteria of farm animals.

The Open COVID Journal
The COVID-19 pandemic first appeared in Wuhan, China, in December 2019 in a cluster of pneumonia ... more The COVID-19 pandemic first appeared in Wuhan, China, in December 2019 in a cluster of pneumonia patients. The causative agent was found to be SARS-CoV-2. Here, we are summarizing current treatment strategies and highlighting the role of bioinformatics, molecular modeling, and structural biology during the COVID-19 pandemic. There are different pharmacological treatments, mostly repurposed drugs, employed for the treatment of COVID-19, including antiviral drugs, corticosteroids, biologic drugs, antibiotics, antifungal agents, and anticoagulants. Some immune-based therapies are also under evaluation, including convalescent plasma, IL-1, IL-6 inhibitors, and interferons. Different bioinformatics networks are established to provide information about the structure, transcriptome, and pathogenicity of the virus. The genotyping analysis for SARS-CoV-2 is also useful in identifying different mutations, SNPs, and conservative domains along the viral genome. Cryo-EM and X-ray diffraction had...

Journal of Inorganic and Organometallic Polymers and Materials
One of the dangerous pathogens that display high resistance to antibiotics is Salmonella enterica... more One of the dangerous pathogens that display high resistance to antibiotics is Salmonella enterica (S. enterica), which infects humans and animals. In this study, a new approach was proposed to fight antibiotic-resistant bacteria by using silver nanoparticles (AgNPs) with adding the phage ZCSE6. The biosynthesized AgNPs were characterized by analysis of spectroscopy profile of the UV–Vis, visualize the morphology, and size with transmission electron microscopy. Both minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were assessed. In addition, the AgNPs were able to control the biofilm formation of S. enterica, also, heavy metals detection by AgNPs and their application in milk. UV–Vis spectra showed a surface resonance peak of 400 and 430 nm corresponding to the formation of AgNPs capping with Ocimum basilicum L. and Hibiscus sabdariffa L., respectively. The MIC and MBC values were 6.25 µg/ml to inhibit the growth of S. enterica and 12.5 µg/ml from k...

Isolation and Characterization of Bacteriophage ZCSE6 against Salmonella spp.: Phage Application in Milk
Biologics, 2021
Food safety is very important in the food industry as most pathogenic bacteria can cause food-bor... more Food safety is very important in the food industry as most pathogenic bacteria can cause food-borne diseases and negatively affect public health. In the milk industry, contamination with Salmonella has always been a challenge, but the risks have dramatically increased as almost all bacteria now show resistance to a wide range of commercial antibiotics. This study aimed to isolate a bacteriophage to be used as a bactericidal agent against Salmonella in milk and dairy products. Here, phage ZCSE6 has been isolated from raw milk sample sand molecularly and chemically characterized. At different multiplicities of infection (MOIs) of 0.1, 0.01, and 0.001, the phage–Salmonella interaction was studied for 6 h at 37 °C and 24 h at 8 °C. In addition, ZCSE6 was tested against Salmonella contamination in milk to examine its lytic activity for 3 h at 37 °C. The results showed that ZCSE6 has a small genome size (<48.5 kbp) and belongs to the Siphovirus family. Phage ZCSE6 revealed a high therm...
Uploads
Papers by abdallah abdelsattar