Bacteria growing under different conditions experience a broad range of demand on the rate of pro... more Bacteria growing under different conditions experience a broad range of demand on the rate of protein synthesis, which profoundly affects cellular resource allocation. During fast growth, protein synthesis has long been known to be modulated by adjusting the ribosome content, with the vast majority of ribosomes engaged at a near-maximal rate of elongation. Here, we systematically characterize protein synthesis by Escherichia coli, focusing on slow-growth conditions. We establish that the translational elongation rate decreases as growth slows, exhibiting a Michaelis-Menten dependence on the abundance of the cellular translational apparatus. However, an appreciable elongation rate is maintained even towards zero growth, including the stationary phase. This maintenance, critical for timely protein synthesis in harsh environments, is accompanied by a drastic reduction in the fraction of active ribosomes. Interestingly, well-known antibiotics such as chloramphenicol also cause a substan...
Gene expression profiles of a Sinorhizobium meliloti 1021 nifA mutant and wild type nodule bacter... more Gene expression profiles of a Sinorhizobium meliloti 1021 nifA mutant and wild type nodule bacteria were compared using whole genome microarrays. The results revealed a large scale alteration of gene expression (601 genes) in the nifA minus background. The loss of NifA altered the expression of many functional groups of genes (macromolecular metabolism, TCA cycle and respiration, nodulation and nitrogen fixation) and may lead to quite different life stages of the nodule bacteria. Upregulation of fixK and its associated genes was observed in the nifA mutant nodule bacteria. Additional quantitative real-time PCR experiments revealed that the transcript levels of fixLJ were significantly upshifted in the nifA mutant nodule bacteria. Putative NifA binding sites were predicted by a statistical method in the upstream sequences of 13 differentially regulated genes from the nifA -transcriptome.
Transcriptional activation of enhancer and p 54 -dependent promoters requires efficient interacti... more Transcriptional activation of enhancer and p 54 -dependent promoters requires efficient interactions between enhancer-binding proteins (EBP) and promoter bound p 54 -RNA polymerase (Ep 54 ) achieved by DNA looping, which is usually facilitated by the integration host factor (IHF). Since the lengths of the intervening region supporting DNAloop formation are similar among IHF-dependent and IHF-independent promoters, the precise reason(s) why IHF is selectively important for the frequency of transcription initiation remain unclear. Here, using kinetic cyclization and in vitro transcription assays we show that, in the absence of IHF protein, the DNA fragments containing an IHFbinding site have much less looping-formation ability than those that lack an IHF-binding site. Furthermore, when an IHF consensus-binding site was introduced into the intervening region between promoter and enhancer of the target DNA fragments, loop formation and DNA-loopdependent transcriptional activation are significantly reduced in a position-independent manner. DNA-looping-independent transcriptional activation was unaffected. The binding of IHF to its consensus site in the target promoters clearly restored efficient DNA looping formation and looping-dependent transcriptional activation. Our data provide evidence that one function for the IHF protein is to release a communication block set by intrinsic properties of the IHF DNAbinding site.
Resistance-Nodulation-Division (RND) efflux pumps are responsible for multidrug resistance in Pse... more Resistance-Nodulation-Division (RND) efflux pumps are responsible for multidrug resistance in Pseudomonas aeruginosa. In this study, we demonstrate that CpxR, previously identified as a regulator of the cell envelope stress response in Escherichia coli, is directly involved in activation of expression of RND efflux pump MexAB-OprM in P. aeruginosa. A conserved CpxR binding site was identified upstream of the mexA promoter in all genome-sequenced P. aeruginosa strains. CpxR is required to enhance mexAB-oprM expression and drug resistance, in the absence of repressor MexR, in P. aeruginosa strains PA14. As defective mexR is a genetic trait associated with the clinical emergence of nalB-type multidrug resistance in P. aeruginosa during antibiotic treatment, we investigated the involvement of CpxR in regulating multidrug resistance among resistant isolates generated in the laboratory via antibiotic treatment and collected in clinical settings. CpxR is required to activate expression of ...
The energetic requirements for biological nitrogen fixation necessitate stringent regulation of t... more The energetic requirements for biological nitrogen fixation necessitate stringent regulation of this process in response to diverse environmental constraints. To ensure that the nitrogen fixation machinery is expressed only under appropriate physiological conditions, the dedicated NifL-NifA regulatory system, prevalent in Proteobacteria, plays a crucial role in integrating signals of the oxygen, carbon and nitrogen status to control transcription of nitrogen fixation (nif) genes. Greater understanding of the intricate molecular mechanisms driving transcriptional control of nif genes may provide a blueprint for engineering diazotrophs that associate with cereals. In this study, we investigated the properties of a single amino acid substitution in NifA, (NifA-E356K) which disrupts the hierarchy of nif regulation in response to carbon and nitrogen status in Azotobacter vinelandii. The NifA-E356K substitution enabled overexpression of nitrogenase in the presence of excess fixed nitrogen...
Proceedings of the National Academy of Sciences, 2020
Significance Stable expression of each component of the nitrogenase system in an active form is a... more Significance Stable expression of each component of the nitrogenase system in an active form is a prerequisite for engineering nitrogen fixation in eukaryotic cells. Mitochondria provide an oxygen-depleted environment for the expression of active nitrogenase in plants, but signal peptides are required to target nuclear encoded Nif proteins to this organelle. We demonstrate that one of the structural subunits of nitrogenase, NifD, is itself susceptible to cleavage by mitochondrial processing peptidases from a variety of plant origins, presenting a major challenge to engineering nitrogen fixation in mitochondria. To overcome this issue, we have engineered NifD variants that are resistant to cleavage and retain high levels of nitrogenase activity, thus providing a potential solution for engineering active MoFe protein in plants.
Understanding how bacteria coordinate growth with cell cycle events to maintain cell size homeost... more Understanding how bacteria coordinate growth with cell cycle events to maintain cell size homeostasis remains a grand challenge in biology. The period of chromosome replication (C period) is a key stage in the bacterial cell cycle. However, the mechanism of in vivo regulation of the C period remains unclear. In this study, we found that titration of the expression of ribonucleotide reductase (RNR), which changes the intracellular deoxynucleoside triphosphate (dNTP) pools, enables significant perturbations of the C period, leading to a substantial change in cell size and DNA content. Our work demonstrates that the intracellular dNTP pool is indeed an important parameter that controls the progression of chromosome replication. Specially, RNR overexpression leads to a shortened C period compared with that of a wild-type strain growing under different nutrient conditions, indicating that the dNTP substrate levels are subsaturated under physiological conditions. In addition, perturbing t...
Proceedings of the National Academy of Sciences, 2018
Significance The requirement of maintaining balanced expression of a large number of gene product... more Significance The requirement of maintaining balanced expression of a large number of gene products represents a major challenge to the engineering of nitrogen fixation in cereal crops, necessitating reiterative combinatorial assembly cycles to optimize monocistronic gene expression. In this study, we have explored a “fuse-and-cleave” virus-derived polyprotein strategy to reduce gene numbers and achieve balanced expression of protein components required for nitrogenase biosynthesis and activity. After testing and regrouping assemblies on the basis of expression profiles, cleavage patterns, and activity, 14 essential genes were selectively assembled into 5 giant genes that enable growth on dinitrogen. This strategy has potential advantages, not only for transferring nitrogen fixation to plants, but also for the engineering of other complex systems of profound agronomic and ecological importance.
Bacterial growth significantly depends on protein synthesis catalyzed by ribosome. Ribosome trans... more Bacterial growth significantly depends on protein synthesis catalyzed by ribosome. Ribosome translation elongation speed is a key factor determining the bacterial protein synthesis rate. However, existing methods for determining translation elongation speed have limited applications. Here we developed a simple and convenient method for measuring bacterial translation elongation speed based on LacZα complementation system. It enables the measurement of in vivo translation elongation speed of different individual genes. Tests related to ribosome translation elongation speed under various growth perturbations including different nutrient conditions, low temperature, a low-speed ribosome mutant, and fusidic acid treatment, were performed to quantitatively validate this method. Using this approach, we further found that nutrient starvation caused a remarkable slow-down of ribosome translation of Escherichia coli (E. coli). We also studied the dynamic change of translation elongation spee...
Resistance-Nodulation-Division (RND) efflux pumps are responsible for multidrug resistance in Pse... more Resistance-Nodulation-Division (RND) efflux pumps are responsible for multidrug resistance in Pseudomonas aeruginosa. In this study, we demonstrate that CpxR, previously identified as a regulator of the cell envelope stress response in Escherichia coli, is directly involved in activation of expression of RND efflux pump MexAB-OprM in P. aeruginosa. A conserved CpxR binding site was identified upstream of the mexA promoter in all genome-sequenced P. aeruginosa strains. CpxR is required to enhance mexAB-oprM expression and drug resistance, in the absence of repressor MexR, in P. aeruginosa strains PA14. As defective mexR is a genetic trait associated with the clinical emergence of nalB-type multidrug resistance in P. aeruginosa during antibiotic treatment, we investigated the involvement of CpxR in regulating multidrug resistance among resistant isolates generated in the laboratory via antibiotic treatment and collected in clinical settings. CpxR is required to activate expression of ...
A fundamental question in microbial physiology concerns why organisms prefer certain nutrients to... more A fundamental question in microbial physiology concerns why organisms prefer certain nutrients to others. For example, among different nitrogen sources, ammonium is the preferred nitrogen source, supporting fast growth, whereas alternative nitrogen sources, such as certain amino acids, are considered to be poor nitrogen sources, supporting much slower exponential growth. However, the physiological/regulatory logic behind such nitrogen dietary choices remains elusive. In this study, by engineering Escherichia coli, we switched the dietary preferences toward amino acids, with growth rates equivalent to that of the wild-type strain grown on ammonia. However, when the engineered strain was cultured together with wild-type E. coli, this growth advantage was diminished as a consequence of ammonium leakage from the transport-and-catabolism (TC)-enhanced (TCE) cells, which are preferentially utilized by wild-type bacteria. Our results reveal that the nitrogen regulatory (Ntr) system fine tu...
The Escherichia coli cAMP receptor protein (CRP) activates transcription initiation at many promo... more The Escherichia coli cAMP receptor protein (CRP) activates transcription initiation at many promoters by binding upstream of core promoter elements and interacting with the C-terminal domain of the RNA polymerase α subunit. Previous studies have shown stringent spacing is required for transcription activation by CRP. Here we report that this stringency can be altered by the nature of different promoter elements at target promoters. Several series of CRP-dependent promoters were constructed with CRP moved to different upstream locations, and their activities were measured. The results show that (i) a full UP element, located immediately downstream of the DNA site for CRP, relaxes the spacing requirements for activation and increases the recruitment of RNAP and open complex formation; (ii) the distal UP subsite plays the key role in this relaxation; (iii) modification of the extended -10 element also affects the spacing requirements for CRP-dependent activation. From these results, we...
The expression of σ(54)-dependent Pseudomonas putida Pu promoter is activated by XylR activator w... more The expression of σ(54)-dependent Pseudomonas putida Pu promoter is activated by XylR activator when cells are exposed to a variety of aromatic inducers. In this study, the transcriptional activation of the P. putida Pu promoter was recreated in the heterologous host Escherichia coli. Here we show that the cAMP receptor protein (CRP), a well-known carbon utilization regulator, had an inhibitory effect on the expression of Pu promoter in a cAMP-dependent manner. The inhibitory effect was not activator specific. In vivo KMnO4 and DMS footprinting analysis indicated that CRP-cAMP poised the RNA polymerase at Pu promoter, inhibiting the isomerization step of the transcription initiation even in the presence of an activator. Therefore, the presence of PTS-sugar, which eliminates cAMP, could activate the poised RNA polymerase at Pu promoter to transcribe. Moreover, the activation region 1 (AR1) of CRP, which interacts directly with the αCTD (C-terminal domain of α-subunit) of RNA polymera...
Membrane-associated histidine kinases (HKs) in two-component systems respond to environmental sti... more Membrane-associated histidine kinases (HKs) in two-component systems respond to environmental stimuli by autophosphorylation and phospho-transfer. HK typically contains a periplasmic sensor domain that regulates the cytoplasmic kinase domain through a conserved cytoplasmic linker. How signal is transduced from the ligand-binding site across the membrane barrier remains unclear. Here, we analyse two linker regions of a typical HK, DctB. One region connects the first transmembrane helix with the periplasmic Per-ARNT-Sim domains, while the other one connects the second transmembrane helix with the cytoplasmic kinase domains. We identify a leucine residue in the first linker region to be essential for the signal transduction and for maintaining the delicate balance of the dimeric interface, which is key to its activities. We also show that the other linker, belonging to the S-helix coiled-coil family, plays essential roles in signal transduction inside the cell. Furthermore, by combinin...
Biological nitrogen fixation is a complex process requiring multiple genes working in concert. To... more Biological nitrogen fixation is a complex process requiring multiple genes working in concert. To date, the Klebsiella pneumoniae nif gene cluster, divided into seven operons, is one of the most studied systems. Its nitrogen fixation capacity is subject to complex cascade regulation and physiological limitations. In this report, the entire K. pneumoniae nif gene cluster was reassembled as operon-based BioBrick parts in Escherichia coli. It provided ,100% activity of native K. pneumoniae system. Based on the expression levels of these BioBrick parts, a T7 RNA polymerase-LacI expression system was used to replace the s 54-dependent promoters located upstream of nif operons. Expression patterns of nif operons were critical for the maximum activity of the recombinant system. By mimicking these expression levels with variable-strength T7dependent promoters, ,42% of the nitrogenase activity of the s 54-dependent nif system was achieved in E. coli. When the newly constructed T7-dependent nif system was challenged with different genetic and physiological conditions, it bypassed the original complex regulatory circuits, with minor physiological limitations. Therefore, we have successfully replaced the nif regulatory elements with a simple expression system that may provide the first step for further research of introducing nif genes into eukaryotic organelles, which has considerable potentials in agro-biotechnology.
Glyphosate is a non-selective broad-spectrum herbicide that inhibits 5-enolpyruvylshikimate-3-pho... more Glyphosate is a non-selective broad-spectrum herbicide that inhibits 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS, also designated as AroA), a key enzyme in the aromatic amino acid biosynthesis pathway in microorganisms and plants. Previously, we reported that a novel AroA (PpAroA1) from Pseudomonas putida had high tolerance to glyphosate, with little homology to class I or class II glyphosate-tolerant AroA. In this study, the coding sequence of PpAroA1 was optimized for tobacco. For maturation of the enzyme in chloroplast, a chloroplast transit peptide coding sequence was fused in frame with the optimized aroA gene (PparoA1 optimized) at the 59 end. The PparoA1 optimized gene was introduced into the tobacco (Nicotiana tabacum L. cv. W38) genome via Agrobacterium-mediated transformation. The transformed explants were first screened in shoot induction medium containing kanamycin. Then glyphosate tolerance was assayed in putative transgenic plants and its T 1 progeny. Our results show that the PpAroA1 from Pseudomonas putida can efficiently confer tobacco plants with high glyphosate tolerance. Transgenic tobacco overexpressing the PparoA1 optimized gene exhibit high tolerance to glyphosate, which suggest that the novel PpAroA1 is a new and good candidate applied in transgenic crops with glyphosate tolerance in future.
The p 54 factor associates with core RNA polymerase (RNAP) to form a holoenzyme that is unable to... more The p 54 factor associates with core RNA polymerase (RNAP) to form a holoenzyme that is unable to initiate transcription unless acted on by an activator protein. p 54 is closely involved in many steps of activator-dependent transcription, such as core RNAP binding, promoter recognition, activator interaction and open complex formation. To systematically define p 54 residues that contribute to each of these functions and to generate a resource for site specific protein labeling, a complete mutant library of p 54 was constructed by alanine-cysteine scanning mutagenesis. Amino acid residues from 3 to 476 of Cys(-)p 54 were systematically mutated to alanine and cysteine in groups of two adjacent residues at a time. The influences of each substitution pair upon the functions of p 54 were analyzed in vivo and in vitro and the functions of many residues were revealed for the first time. Increased p 54 isomerization activity seldom corresponded with an increased transcription activity of the holoenzyme, suggesting the steps after p 54 isomerization, likely to be changes in core RNAP structure, are also strictly regulated or rate limiting to open complex formation. A linkage between core RNAP-binding activity and activator responsiveness indicates that the p 54-core RNAP interface changes upon activation.
Cyclic AMP (cAMP) dependent catabolite repression effect in E. coli is among the most intensely s... more Cyclic AMP (cAMP) dependent catabolite repression effect in E. coli is among the most intensely studied regulatory processes in biology. However, the physiological function(s) of cAMP signalling and its molecular triggers remain elusive. Here we use a quantitative physiological approach to show that cAMP signalling tightly coordinates the cell's protein expression program with its metabolic needs during exponential cell growth: The expression of carbon catabolic genes increased linearly with decreasing growth rates upon limitation of carbon influx, but decreased linearly with decreasing growth rate upon limitation of nitrogen or sulfur influx. In contrast, the expression of biosynthetic genes exhibited the opposite linear growth-rate dependence as the catabolic genes. A coarse-grained mathematical model provides a quantitative framework for understanding and predicting gene expression responses to catabolic and anabolic limitations. A scheme of integral feedback control featuring the inhibition of cAMP signalling by metabolic precursors is proposed and validated. These results reveal a key physiological role of cAMPdependent catabolite repression: to ensure that proteomic resources are spent on distinct metabolic sectors as needed in different nutrient environments. Our finding underscores the power of quantitative physiology in unravelling the underlying functions of complex molecular signalling networks.
Uploads
Papers by Yiping Wang