Papers by YILDIZ KARADAYI
Time-Sensitive Embedding for Understanding Customer Navigational Behavior in Mobile Banking
Springer eBooks, 2023

Techniques used for spatio-temporal anomaly detection in an unsupervised settings has attracted g... more Techniques used for spatio-temporal anomaly detection in an unsupervised settings has attracted great attention in recent years. It has extensive use in a wide variety of applications such as: medical diagnosis, sensor events analysis, earth science, fraud detection systems, etc. Most of the real world time series datasets have spatial dimension as additional context such as geographic location. Although many temporal data are spatio-temporal in nature, existing techniques are limited to handle both contextual (spatial and temporal) attributes during anomaly detection process. Taking into account of spatial context in addition to temporal context would help uncovering complex anomaly types and unexpected and interesting knowledge about problem domain. In this paper, a new approach to the problem of unsupervised anomaly detection in a multivariate spatio-temporal dataset is proposed using a hybrid deep learning framework. The proposed approach is composed of a Long Short Term Memory ...

IEEE Access
Unsupervised anomaly detection for spatio-temporal data has extensive use in a wide variety of ap... more Unsupervised anomaly detection for spatio-temporal data has extensive use in a wide variety of applications such as earth science, traffic monitoring, fraud and disease outbreak detection. Most real-world time series data have a spatial dimension as an additional context which is often expressed in terms of coordinates of the region of interest (such as latitude-longitude information). However, existing techniques are limited to handle spatial and temporal contextual attributes in an integrated and meaningful way considering both spatial and temporal dependency between observations. In this paper, a hybrid deep learning framework is proposed to solve the unsupervised anomaly detection problem in multivariate spatio-temporal data. The proposed framework works with unlabeled data and no prior knowledge about anomalies are assumed. As a case study, we use the public COVID-19 data provided by the Italian Department of Civil Protection. Northern Italy regions' COVID-19 data are used to train the framework; and then any abnormal trends or upswings in COVID-19 data of central and southern Italian regions are detected. The proposed framework detects early signals of the COVID-19 outbreak in test regions based on the reconstruction error. For performance comparison, we perform a detailed evaluation of 15 algorithms on the COVID-19 Italy dataset including the state-of-the-art deep learning architectures. Experimental results show that our framework shows significant improvement on unsupervised anomaly detection performance even in data scarce and high contamination ratio scenarios (where the ratio of anomalies in the data set is more than 5%). It achieves the earliest detection of COVID-19 outbreak and shows better performance on tracking the peaks of the COVID-19 pandemic in test regions. As the timeliness of detection is quite important in the fight against any outbreak, our framework provides useful insight to suppress the resurgence of local novel coronavirus outbreaks as early as possible. INDEX TERMS Spatio-temporal anomaly detection, multivariate, unsupervised, deep learning, COVID-19, outbreak detection, Italy.

Applied Sciences
Multivariate time-series data with a contextual spatial attribute have extensive use for finding ... more Multivariate time-series data with a contextual spatial attribute have extensive use for finding anomalous patterns in a wide variety of application domains such as earth science, hurricane tracking, fraud, and disease outbreak detection. In most settings, spatial context is often expressed in terms of ZIP code or region coordinates such as latitude and longitude. However, traditional anomaly detection techniques cannot handle more than one contextual attribute in a unified way. In this paper, a new hybrid approach based on deep learning is proposed to solve the anomaly detection problem in multivariate spatio-temporal dataset. It works under the assumption that no prior knowledge about the dataset and anomalies are available. The architecture of the proposed hybrid framework is based on an autoencoder scheme, and it is more efficient in extracting features from the spatio-temporal multivariate datasets compared to the traditional spatio-temporal anomaly detection techniques. We con...
Uploads
Papers by YILDIZ KARADAYI