— The High Efficiency Video Coding (HEVC) standard has recently been extended to support efficien... more — The High Efficiency Video Coding (HEVC) standard has recently been extended to support efficient representation of multiview video and depth-based 3D video formats. The multiview extension, MV-HEVC, allows efficient coding of multiple camera views and associated auxiliary pictures, and can be implemented by reusing single-layer decoders without changing the block-level processing modules since block-level syntax and decoding processes remain unchanged. Bit rate savings compared with HEVC simulcast are achieved by enabling the use of interview references in motion-compensated prediction. The more advanced 3D video extension, 3D-HEVC, targets a coded representation consisting of multiple views and associated depth maps, as required for generating additional intermediate views in advanced 3D displays. Additional bit rate reduction compared with MV-HEVC is achieved by specifying new block-level video coding tools, which explicitly exploit statistical dependencies between video texture and depth and specifically adapt to the properties of depth maps. The technical concepts and features of both extensions are presented in this paper. Index Terms— 3D High Efficiency Video Coding (3D-HEVC), HEVC, Joint Collaborative Team on 3D Video Coding Extension Development (JCT-3V), Moving Picture Experts Group (MPEG), Multiview HEVC (MV-HEVC), standards, Video Coding Experts Group (VCEG), video compression.
Keywords: 3D video coding Early merge mode decision Early CU splitting termination Interview corr... more Keywords: 3D video coding Early merge mode decision Early CU splitting termination Interview correlation 3D-HEVC a b s t r a c t As a 3D extension of the High Efficiency Video Coding (HEVC) standard, 3D-HEVC is developed to improve the coding efficiency of multi-view video. However, the improvement of the coding efficiency is obtained at the expense of a computational complexity increase. How to relieve the computational burden of the encoder is becoming a critical problem in applications. In this paper, a fast encoder decision algorithm to encode the dependent texture views is proposed, where two strategies to accelerate encoder decision by exploiting interview correlations are utilized. The first one is an early merge mode decision algorithm, and the second one is an early CU splitting termination algorithm. Experimental results show that the proposed algorithm can achieve 47.1% encoding time saving with overall 0.1% BD-rate reduction compared to HTM (3D-HEVC test model) version 7 under the common test condition (CTC). Both of the two strategies have been adopted into the 3D-HEVC reference software and enabled as a default encoding process under CTC.
Uploads
Papers by Soodabeh 1992