Large calving events at Greenland's largest outlet glaciers are associated with glacial earthquak... more Large calving events at Greenland's largest outlet glaciers are associated with glacial earthquakes and nearinstantaneous increases in glacier flow speed. At some glaciers and ice streams, flow is also modulated in a regular way by ocean tidal forcing at the terminus. At Helheim Glacier, analysis of geodetic data shows decimeter-level periodic position variations in response to tidal forcing. However, we also observe transient increases of more than 100% in the glacier's responsiveness to such tidal forcing following glacial-earthquake calving events. The timing and amplitude of the changes correlate strongly with the step-like increases in glacier speed and longitudinal strain rate associated with glacial earthquakes. The enhanced response to the ocean tides may be explained by a temporary disruption of the subglacial drainage system and a concomitant reduction of the friction at the ice-bedrock interface, and suggests a new means by which geodetic data may be used to infer glacier properties.
The rate of net ice mass loss from Greenland's marine terminating glaciers has more than doubled ... more The rate of net ice mass loss from Greenland's marine terminating glaciers has more than doubled over the past two decades highlighting their importance for future sealevel rise. Current projections are built upon observations from a short term record spanning only from several years to a decade. However, the last decade is dominated by anomalous dynamic changes and is therefore not representative of multi-decadal behaviour of glacier dynamics. Abbreviations v Abbreviations BOXa climate reconstruction after Box et al. (2013)
Future projections of global mean sea level change are uncertain, partly because of our limited u... more Future projections of global mean sea level change are uncertain, partly because of our limited understanding of the dynamics of Greenland’s outlet glaciers. Here we study Nioghalvfjerdsbræ, an outlet glacier of the Northeast Greenland Ice Stream that holds 1.1 m sea-level equivalent of ice. We use GPS observations and numerical modelling to investigate the role of tides as well as the elastic contribution to glacier flow. We find that ocean tides alter the basal lubrication of the glacier up to 10 km inland of the grounding line, and that their influence is best described by a viscoelastic rather than a viscous model. Further inland, sliding is the dominant mechanism of fast glacier motion, and the ice flow induces persistent elastic strain. We conclude that elastic deformation plays a role in glacier flow, particularly in areas of steep topographic changes and fast ice velocities.
Journal of Geophysical Research: Earth Surface, 2020
Users may download and print one copy of any publication from the public portal for the purpose... more Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
The Greenland Ice Sheet is the largest land ice contributor to sea level rise. This will continue... more The Greenland Ice Sheet is the largest land ice contributor to sea level rise. This will continue in the future but at an uncertain rate and observational estimates are limited to the last few decades. Understanding the long-term glacier response to external forcing is key to improving projections. Here we use historical photographs to calculate ice loss from 1880–2012 for Jakobshavn, Helheim, and Kangerlussuaq glacier. We estimate ice loss corresponding to a sea level rise of 8.1 ± 1.1 millimetres from these three glaciers. Projections of mass loss for these glaciers, using the worst-case scenario, Representative Concentration Pathways 8.5, suggest a sea level contribution of 9.1–14.9 mm by 2100. RCP8.5 implies an additional global temperature increase of 3.7 °C by 2100, approximately four times larger than that which has taken place since 1880. We infer that projections forced by RCP8.5 underestimate glacier mass loss which could exceed this worst-case scenario.
Users may download and print one copy of any publication from the public portal for the purpose... more Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
We present a 1986 through March 2020 estimate of Greenland Ice Sheet ice discharge. Our data incl... more We present a 1986 through March 2020 estimate of Greenland Ice Sheet ice discharge. Our data include all discharging ice that flows faster than 100 m yr −1 and are generated through an automatic and adaptable method, as opposed to conventional handpicked gates. We position gates near the present-year termini and estimate problematic bed topography (ice thickness) values where necessary. In addition to using annual timevarying ice thickness, our time series uses velocity maps that begin with sparse spatial and temporal coverage and end with near-complete spatial coverage and 12 d updates to velocity. The 2010 through 2019 average ice discharge through the flux gates is ∼ 487 ± 49 Gt yr −1. The 10 % uncertainty stems primarily from uncertain ice bed location (ice thickness). We attribute the ∼ 50 Gt yr −1 differences among our results and previous studies to our use of updated bed topography from BedMachine v3. Discharge is approximately steady from 1986 to 2000, increases sharply from 2000 to 2005, and then is approximately steady again. However, regional and glacier variability is more pronounced, with recent decreases at most major glaciers and in all but one region offset by increases in the northwest region through 2017 and in the southeast from 2017 through March 2020. As part of the journal's living archive option and our goal to make an operational product, all input data, code, and results from this study will be updated as needed (when new input data are available, as new features are added, or to fix bugs) and made available at https:
This is a PDF file of a peer-reviewed paper that has been accepted for publication. Although uned... more This is a PDF file of a peer-reviewed paper that has been accepted for publication. Although unedited, the content has been subjected to preliminary formatting. Nature is providing this early version of the typeset paper as a service to our authors and readers. The text and figures will undergo copyediting and a proof review before the paper is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers apply.
Greenland transient mass change GRACE GPS SMB ice discharge Much of the research to understand th... more Greenland transient mass change GRACE GPS SMB ice discharge Much of the research to understand the ice mass changes of Greenland ice sheet (GrIS) has focused on detecting linear rates and accelerations at decadal or longer periods. The transient (short-term, nonsecular) mass changes show large variability, and if not properly accounted for, can introduce significant biases into estimates of long-term ice mass loss rates and accelerations. Despite the growing number of geodetic observations, in terms of spatial coverage, types of observables, and the extent of the time series, studies of the transient mass changes over GrIS are lacking. To address this limitation, we apply multi-channel singular spectral analysis to the Gravity Recovery and Climate Experiment (GRACE) mass concentrations (mascon), surface mass balance (SMB) model output, and ice discharge data, to determine the transient mass changes over Greenland over the decade (2007 to 2017). The goal of this analysis is to elucidate the spatio-temporal variability of the ice mass change. For the entire GrIS, both the mascon and SMB transient mass changes are characterized by a sustained
Climate changes are pronounced in Arctic regions and increase the vulnerability of the Arctic coa... more Climate changes are pronounced in Arctic regions and increase the vulnerability of the Arctic coastal zone. For example, increases in melting of the Greenland Ice Sheet and reductions in sea ice and permafrost distribution are likely to alter coastal morphodynamics. The deltas of Greenland are largely unaffected by human activity, but increased freshwater runoff and sediment fluxes may increase the size of the deltas, whereas increased wave activity in ice-free periods could reduce their size, with the net impact being unclear until now. Here we show that southwestern Greenland deltas were largely stable from the 1940s to 1980s, but prograded (that is, sediment deposition extended the delta into the sea) in a warming Arctic from the 1980s to 2010s. Our results are based on the areal changes of 121 deltas since the 1940s, assessed using newly discovered aerial photographs and remotely sensed imagery. We find that delta progradation was driven by high freshwater runoff from the Greenl...
Measurements of vertical crustal uplift from bedrock sites around the edge of the Greenland ice s... more Measurements of vertical crustal uplift from bedrock sites around the edge of the Greenland ice sheet (GrIS) can be used to constrain present day mass loss. Interpreting any observed crustal displacement around the GrIS in terms of present day changes in ice is complicated, however, by the glacial isostatic adjustment (GIA) signal. With GPS observations alone, it is impossible to separate the uplift driven by present day mass changes from that due to ice mass changes in the past. Wahr et al. (1995) demonstrated that viscoelastic surface displacements were related to the viscoelastic gravity changes through a proportionality constant that is nearly independent of the choice of Earth viscosity or ice history model. Thus, by making measurements of both gravity and surface motion at a bedrock site, the viscoelastic effects could be removed from the observations and we would be able to constrain present day ice mass changes. Alternatively, we could use the same observations of surface displacements and gravity to determine the GIA signal. In this paper, we extend the theory of Wahr et al. (1995) by introducing a constant, Z , that represents the ratio between the elastic changes in gravity and elastic uplift at a particular site due to present day mass changes. Further, we combine 20 yrs of GPS observations of uplift with eight absolute gravity observations over the same period to determine the GIA signal near Kulusuk, a site on the southeastern side of the GrIS, to experimentally demonstrate the theory. We estimate that the GIA signal in the region is 4.49 ± 1.44 mm/yr and is inconsistent with most previously reported model predictions that demonstrate that the GIA signal here is negative. However, as there is very little in situ data to constrain the GIA rate in this part of Greenland, the Earth model or the ice history reconstructions could be inaccurate (Khan et al., 2016). Improving the estimate of GIA in this region of Greenland will allow us to better determine the present day changes in ice mass in the region, e.g. from GRACE.
Users may download and print one copy of any publication from the public portal for the purpose... more Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Digital Elevation Models (DEMs) play a prominent role in glaciological studies for the mass balan... more Digital Elevation Models (DEMs) play a prominent role in glaciological studies for the mass balance of glaciers and ice sheets. By providing a time snapshot of glacier geometry, DEMs are crucial for most glacier evolution modelling studies, but are also important for cryospheric modelling in general. We present a historical medium-resolution DEM and orthophotographs that consistently cover the entire surroundings and margins of the Greenland Ice Sheet 1978-1987. About 3,500 aerial photographs of Greenland are combined with field surveyed geodetic ground control to produce a 25 m gridded DEM and a 2 m black-and-white digital orthophotograph. Supporting data consist of a reliability mask and a photo footprint coverage with recording dates. Through one internal and two external validation tests, this DEM shows an accuracy better than 10 m horizontally and 6 m vertically while the precision is better than 4 m. This dataset proved successful for topographical mapping and geodetic mass ba...
Observations over the past 2 decades show substantial ice loss associated with the speed-up of ma... more Observations over the past 2 decades show substantial ice loss associated with the speed-up of marine-terminating glaciers in Greenland. Here we use a regional three-dimensional outlet glacier model to simulate the behaviour of Jakobshavn Isbræ (JI) located in western Greenland. Our approach is to model and understand the recent behaviour of JI with a physical process-based model. Using atmospheric forcing and an ocean parametrization we tune our model to reproduce observed frontal changes of JI during 1990–2014. In our simulations, most of the JI retreat during 1990–2014 is driven by the ocean parametrization used and the glacier's subsequent response, which is largely governed by bed geometry. In general, the study shows significant progress in modelling the temporal variability of the flow at JI. Our results suggest that the overall variability in modelled horizontal velocities is a response to variations in terminus position. The model simulates two major accelerations that ...
Users may download and print one copy of any publication from the public portal for the purpose... more Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Journal of Geophysical Research: Solid Earth, 2013
We describe how GPS measurements of horizontal crustal motion can be used to augment vertical cru... more We describe how GPS measurements of horizontal crustal motion can be used to augment vertical crustal motion measurements, to improve and extend GPS studies of surface loading. We show that the ratio of the vertical displacement to the horizontal displacement, combined with the direction of the horizontal motion, can help determine whether nearby loading is concentrated in a small region (for example, in a single lake or glacier), and where that region is. We illustrate this method by applying it to two specific cases: an analysis of GPS data from northern California to monitor the level of Lake Shasta, and the analysis of data from a single GPS site in southeast Greenland to determine mass variability of two large, nearby outlet glaciers: Helheim Glacier and Midgaard Glacier. The California example serves largely as a proof-of-concept, where the results can be assessed by comparing with independent observations (Lake Shasta tide gauge data, in this case). Our Greenland results show that both Helheim and Midgaard have experienced notable interannual variations in mass loss rate over the last decade. Helheim'
Journal of Geophysical Research: Solid Earth, 2013
We analyze Global Positioning System (GPS) time series of relative vertical and horizontal surfac... more We analyze Global Positioning System (GPS) time series of relative vertical and horizontal surface displacements from 2006 to 2012 at four GPS sites located between 5 and 150 km from the front of Jakobshavn Isbrae (JI) in west Greenland. Horizontal displacements during 2006-2010 at KAGA, ILUL, and QEQE, relative to the site AASI, are directed toward northwest , suggesting that the main mass loss signal is located near the frontal portion of JI. The directions of the observed displacements are supported by modeled displacements, derived from NASA's Airborne Topographic Mapper (ATM)
The Greenland ice sheet has been one of the largest contributors to global sea-level rise over th... more The Greenland ice sheet has been one of the largest contributors to global sea-level rise over the past 20 years, accounting for 0.5 mm yr 1 of a total of 3.2 mm yr 1. A significant portion of this contribution is associated with the speed-up of an increased number of glaciers in southeast and northwest Greenland. Here, we show that the northeast Greenland ice stream, which extends more than 600 km into the interior of the ice sheet, is now undergoing sustained dynamic thinning, linked to regional warming, after more than a quarter of a century of stability. This sector of the Greenland ice sheet is of particular interest, because the drainage basin area covers 16% of the ice sheet (twice that of Jakobshavn Isbrae) and numerical model predictions suggest no significant mass loss for this sector, leading to an underestimation of future global sea-level rise. The geometry of the bedrock and monotonic trend in glacier speed-up and mass loss suggests that dynamic drawdown of ice in this region will continue in the near future.
Uploads
Papers by Shfaqat Khan