Characteristics of Sub-diurnal Extreme Precipitation-Producing Systems
Agu Spring Meeting Abstracts, May 1, 2008
ABSTRACT Few studies examine sub-diurnal precipitation extremes, instead focusing on daily extrem... more ABSTRACT Few studies examine sub-diurnal precipitation extremes, instead focusing on daily extremes. However, flash flooding occurs on shorter time-scales and significantly impacts life and property. Case studies have identified storm systems responsible for significant flooding events, but this study seeks to quantify the characteristics of systems that produce sub-diurnal extreme precipitation. Sub-diurnal extreme precipitation events are identified by examining hourly precipitation data from select stations in Indiana and Illinois during the period of 1956-2005. Timeseries of precipitation accumulations for 3- and 6- hour periods are fitted to the Pareto distribution to determine the 10-year return levels for the stations. An extreme precipitation event is defined as one that exceeds the 10-year return level over both a 3-hour and a 6-hour period. Stations in Indiana have return levels ranging from 2.02 in. to 2.74 in. for 3-hour periods, and 2.46 in. to 3.16 in. for 6-hour periods. Stations in Illinois have return levels ranging from 2.43 in. to 2.84 in. for 3-hour periods, and 2.84 in. to 3.39 in. for 6-hour periods. These return levels yield about 6 events per station over the 50-year period of record for Indiana and between 3 and 7 events per station in Illinois. Multisensor precipitation data are available beginning in 1996 for stage II analyses and 2002 for stage IV analyses. This results in a total of 6 extreme precipitation events from the Indiana stations and 5 from the Illinois stations. The automated classification procedure developed by Baldwin et al. (2005) is applied to stage II/IV analyses for each hour of each event to determine the statistical characteristics for each event. Areas of continuous precipitation above a user-defined threshold are considered a single object. The threshold value of 5 mm (0.20 in.), used here, is considered the lower bound for convective precipitation. Object characteristics include: number of pixels (4 km x 4 km), mean precipitation, variance, maximum precipitation, shape, and orientation angle. During each hour of an extreme precipitation event the object whose centroid is closest to the station is used to define the characteristics of the precipitating system. Over the course of an extreme precipitation event the maximum precipitation identified in the object corresponds well to hours in which extreme heavy precipitation (> 1.00 in.) occurs. While object sizes seem to be closely related to the amount of maximum precipitation from hour to hour, sizes range from hundreds to thousands of pixels during peak maximum precipitation.
Uploads
Papers by Robert Trapp