Understanding More About Human and Machine Attention in Deep Neural Networks
IEEE Transactions on Multimedia, 2021
Human visual system can selectively attend to parts of a scene for quick perception, a biological... more Human visual system can selectively attend to parts of a scene for quick perception, a biological mechanism known as Human attention. Inspired by this, recent deep learning models encode attention mechanisms to focus on the most task-relevant parts of the input signal for further processing, which is called Machine/Neural/Artificial attention. Understanding the relation between human and machine attention is important for interpreting and designing neural networks. Many works claim that the attention mechanism offers an extra dimension of interpretability by explaining where the neural networks look. However, recent studies demonstrate that artificial attention maps do not always coincide with common intuition. In view of these conflicting evidence, here we make a systematic study on using artificial attention and human attention in neural network design. With three example computer vision tasks (i.e., salient object segmentation, video action recognition, and fine-grained image cla...
Uploads
Papers by Qiuxia Lai