The anticipated increase in the count of IoT devices in the coming years motivates the developmen... more The anticipated increase in the count of IoT devices in the coming years motivates the development of efficient algorithms that can help in their effective management while keeping the power consumption low. In this paper, we propose an intelligent multi-channel resource allocation algorithm for dense LoRa networks termed as LoRaDRL and provide a detailed performance evaluation. Our results demonstrate that the proposed algorithm not only significantly improves LoRaWAN's packet delivery ratio (PDR) but is also able to support mobile end-devices (EDs) while ensuring lower power consumption hence increasing both the lifetime and capacity of the network. Most previous works focus on proposing different MAC protocols for improving the network capacity, i.e., Lo-RaWAN, delay before transmit etc. We show that through the use of LoRaDRL, we can achieve the same efficiency with ALOHA compared to LoRaSim, and LoRa-MAB while moving the complexity from EDs to the gateway thus making the EDs simpler and cheaper. Furthermore, we test the performance of LoRaDRL under large-scale frequency jamming attacks and show its adaptiveness to the changes in the environment. We show that LoRaDRL's output improves the performance of state-of-the-art techniques resulting in some cases an improvement of more than 500% in terms of PDR compared to learning-based techniques.
With the large-scale research and development in space sciences, space technologies, and network ... more With the large-scale research and development in space sciences, space technologies, and network communication technologies, there is a great demand of satellite imagery security system for providing secure storage and transmission of satellite imagery over internet and/or shared network environment. This brings new challenges to protect sensitive and critical satellite imagery from unauthorized access and illegal use in order to
Despite the best efforts of networking researchers and practitioners, an ideal Internet experienc... more Despite the best efforts of networking researchers and practitioners, an ideal Internet experience is inaccessible to an overwhelming majority of people the world over, mainly due to the lack of cost-efficient ways of provisioning high-performance, global Internet. In this paper, we argue that instead of an exclusive focus on a utopian goal of universally accessible "ideal networking" (in which we have a high throughput and quality of service as well as low latency and congestion), we should consider providing "approximate networking" through the adoption of context-appropriate trade-offs. In this regard, we propose to leverage the advances in the emerging trend of "approximate computing" that rely on relaxing the bounds of precise/exact computing to provide new opportunities for improving the area, power, and performance efficiency of systems by orders of magnitude by embracing output errors in resilient applications. Furthermore, we propose to extend the dimensions of approximate computing towards various knobs available at network layers. Approximate networking can be used to provision "Global Access to the Internet for All" (GAIA) in a pragmatically tiered fashion, in which different users around the world are provided a different context-appropriate (but still contextually functional) Internet experience.
Uploads
Papers by MUHAMMAD USAMA