<title>Detection and suppression for mechanical resonance in hard disk drives with built-in piezoelectric sensors</title>
Proceedings of SPIE, Jul 1, 2002
Many components in hard disk drives (HDDs), when in operation, are subjected to vibration due to ... more Many components in hard disk drives (HDDs), when in operation, are subjected to vibration due to out of balance of rotating components, inertial impacts under servo driving and dynamic interactions between components. These vibrations have been found to have significant effect upon the servo performance of drive systems. In order to improve the servo performance by reducing the effect of mechanical resonance in HDDs, this paper seeks to detect and suppress mechanical resonance of the head actuator using smart sensors and multi-sensing control techniques. In this regard, sensitive and miniature piezoelectric elements from the polymer-based piezoelectric materials PVDF (polyvinylindin fluoride) or the ceramic-based piezoelectric materials PZT 9lead zircornate titanate) are built in the head actuator for sensing the mechanical vibration. In the experiment, the multi-sensing signals by the piezoelectric sensors and the laser Doppler vibrometer (LDV) are transferred into a voice coil motor (VCM) through a feedback controller so as to actively suppress structural resonance. Numerical simulation and experimental results indicate that the piezoelectric sensors provide an effective way in monitoring the HDD actuator resonance, and the active vibration control strategy is capable of suppressing main mechanical resonance in the head actuator effectively.
Uploads
Papers by Yaolong Lou