The force concept inventory (FCI) is a set of multiple-choice items that has been administered an... more The force concept inventory (FCI) is a set of multiple-choice items that has been administered and analyzed in a number of regions across the world. The purpose of this study is to evaluate students' comprehension of force concepts, using a thread that examines and analyzes the most common force concept misunderstandings among students. The FCI is distributed to 1,440 senior four students from various Ugandan schools. The ITEMAN software is used to assess students' performance. Then a few FCI items are examined to acquire a better grasp of the students' misunderstandings. Using the Gnuplot software, we displayed the students' total scores versus their percentage scores for each FCI alternative choice, which provides greater visual confirmation of the findings than statistical analysis. The findings show that misunderstandings dispersed in accordance with students' performance. The distractors are the most appealing of the analyzed FCI items, with the highest percentages of students picking each alternate option. Imitating that students enter physics classes preconceived about their prior knowledge, viewpoints, ideas, and values. As a result, this study underlines to Ugandan physics teachers that students have misconceptions. Physics teachers and students should interact in an active learning environment using conceptual change methods to correct misconceptions.
International Journal of Learning, Teaching and Educational Research, 2021
Concept inventories (CI) constitute a key thread in Physics Educational Research. As such, unders... more Concept inventories (CI) constitute a key thread in Physics Educational Research. As such, understanding the methodology and the technique of developing a good CI is essential for all physics teachers. This research aims to develop a circular-motion concept Inventory (CMCI) that is valid in the Ugandan context. To reach a consensus, we used the Delphi technique to collect the data from eleven experts in the physics discipline. These experts were asked to rank each CI item in the inventory, based on the relevant criteria, for assigning a degree of relevance for adoption on a scale ranging from one to four, one being "not relevant" and four being "highly relevant.” Because the technique does not require experts to meet face-to-face, they remained anonymous to one another. These experts are provided with structured questionnaires of CI items from the Rotational-Kinematics Inventory (RKI) and Rolling and Rotational Motion-Concept (RRMC) inventories in the first round, in ...
Uploads
Papers by Lakhan Yadav