Information Retrieval has a long history of applying either discriminative or generative modeling... more Information Retrieval has a long history of applying either discriminative or generative modeling to retrieval and ranking tasks. Recent developments in transformer architectures and multi-task learning techniques have dramatically improved our ability to train effective neural models capable of resolving a wide variety of tasks using either of these paradigms. In this paper, we propose a novel multitask learning approach which can be used to produce more effective neural ranking models. The key idea is to improve the quality of the underlying transformer model by cross-training a retrieval task and one or more complementary language generation tasks. By targeting the training on the encoding layer in the transformer architecture, our experimental results show that the proposed multi-task learning approach consistently improves retrieval effectiveness on the targeted collection and can easily be re-targeted to new ranking tasks. We provide an in-depth analysis showing how multi-task learning modifies model behaviors, resulting in more general models. CCS CONCEPTS • Information systems → Retrieval models and ranking.
Ranking models lie at the heart of research on information retrieval (IR). During the past decade... more Ranking models lie at the heart of research on information retrieval (IR). During the past decades, different techniques have been proposed for constructing ranking models, from traditional heuristic methods, probabilistic methods, to modern machine learning methods. Recently, with the advance of deep learning technology, we have witnessed a growing body of work in applying shallow or deep neural networks to the ranking problem in IR, referred to as neural ranking models in this paper. The power of neural ranking models lies in the ability to learn from the raw text inputs for the ranking problem to avoid many limitations of hand-crafted features. Neural networks have sufficient capacity to model complicated tasks, which is needed to handle the complexity of relevance estimation in ranking. Since there have been a large variety of neural ranking models proposed, we believe it is the right time to summarize the current status, learn from existing methodologies, and gain some insights for future development. In contrast to existing reviews, in this survey, we will take a deep look into the neural ranking models from different dimensions to analyze their underlying assumptions, major design principles, and learning strategies. We compare these models through benchmark tasks to obtain a comprehensive empirical understanding of the existing techniques. We will also discuss what is missing in the current literature and what are the promising and desired future directions.
Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2015
We investigate the problem of predicting the quality of automatic speech recognition (ASR) output... more We investigate the problem of predicting the quality of automatic speech recognition (ASR) output under the following rigid constraints: i) reference transcriptions are not available, ii) confidence information about the system that produced the transcriptions is not accessible, and iii) training and test data come from multiple domains. To cope with these constraints (typical of the constantly increasing amount of automatic transcriptions that can be found on the Web), we propose a domain-adaptive approach based on multitask learning. Different algorithms and strategies are evaluated with English data coming from four domains, showing that the proposed approach can cope with the limitations of previously proposed single task learning methods.
Uploads
Papers by Hamed Zamani