Papers by André Luiz Pires Barbeitos Teixeira
IEEE Transactions on Control of Network Systems, 2017
In this paper, we address the problem of distributed reconfiguration of networked control systems... more In this paper, we address the problem of distributed reconfiguration of networked control systems upon the removal of misbehaving sensors and actuators. In particular, we consider systems with redundant sensors and actuators cooperating to recover from faults. Reconfiguration is performed while minimizing a steady-state estimation error covariance and quadratic control cost. A model-matching condition is imposed on the reconfiguration scheme. It is shown that the reconfiguration and its underlying computation can be distributed. Using an average dwell-time approach, the stability of the distributed reconfiguration scheme under finite-time termination is analyzed. The approach is illustrated in a numerical example.
2016 Science of Security for Cyber-Physical Systems Workshop (SOSCYPS), 2016
In this paper, we investigate detectability and identifiability of attacks on linear dynamical sy... more In this paper, we investigate detectability and identifiability of attacks on linear dynamical systems that are subjected to external disturbances. We generalize a concept for a security index, which was previously introduced for static systems. The generalized index exactly quantifies the resources necessary for targeted attacks to be undetectable and unidentifiable in the presence of disturbances. This information is useful for both risk assessment and for the design of anomaly detectors. Finally, we show how techniques from the fault detection literature can be used to decouple disturbances and to identify attacks, under certain sparsity constraints.

2016 ACM/IEEE 7th International Conference on Cyber-Physical Systems (ICCPS), 2016
Energy management systems (EMS) are used to control energy usage in buildings and campuses, by em... more Energy management systems (EMS) are used to control energy usage in buildings and campuses, by employing technologies such as supervisory control and data acquisition (SCADA) and building management systems (BMS), in order to provide reliable energy supply and maximise user comfort while minimising energy usage. Historically, EMS systems were installed when potential security threats were only physical. Nowadays, EMS systems are connected to the building network and as a result directly to the outside world. This extends the attack surface to potential sophisticated cyber-attacks, which adversely impact EMS operation, resulting in service interruption and downstream financial implications. Currently, the security systems that detect attacks operate independently to those which deploy resiliency policies and use very basic methods. We propose a novel EMS cyber-physical-security framework that executes a resilient policy whenever an attack is detected using security analytics. In this framework, both the resilient policy and the security analytics are driven by EMS data, where the physical correlations between the data-points are identified to detect outliers and then the control loop is closed using an estimated value in place of the outlier. The framework has been tested using a reduced order model of a real EMS site.

IEEE Transactions on Automatic Control, 2017
We introduce a model of estimation in the presence of strategic, self-interested sensors. We empl... more We introduce a model of estimation in the presence of strategic, self-interested sensors. We employ a game-theoretic setup to model the interaction between the sensors and the receiver. The cost function of the receiver is equal to the estimation error variance while the cost function of the sensor contains an extra term which is determined by its private information. We start by the single sensor case in which the receiver has access to a noisy but honest side information in addition to the message transmitted by a strategic sensor. We study both static and dynamic estimation problems. For both these problems, we characterize a family of equilibria in which the sensor and the receiver employ simple strategies. Interestingly, for the dynamic estimation problem, we find an equilibrium for which the strategic sensor uses a memory-less policy. We generalize the static estimation setup to multiple sensors with synchronous communication structure (i.e., all the sensors transmit their messages simultaneously). We prove the maybe surprising fact that, for the constructed equilibrium in affine strategies, the estimation quality degrades as the number of sensors increases. However, if the sensors are herding (i.e., copying each other policies), the quality of the receiver's estimation improves as the number of sensors increases. Finally, we consider the asynchronous communication structure (i.e., the sensors transmit their messages sequentially).
Uploads
Papers by André Luiz Pires Barbeitos Teixeira