Papers by Abdollah Mousavi

Minimal standards for the description of new genera and species of rhizobia and agrobacteria
International Journal of Systematic and Evolutionary Microbiology, 2019
Herein the members of the Subcommittee on Taxonomy of Rhizobia and Agrobacteria of the Internatio... more Herein the members of the Subcommittee on Taxonomy of Rhizobia and Agrobacteria of the International Committee on Systematics of Prokaryotes review recent developments in rhizobial and agrobacterial taxonomy and propose updated minimal standards for the description of new species (and genera) in these groups. The essential requirements (minimal standards) for description of a new species are (1) a genome sequence of at least the proposed type strain and (2) evidence for differentiation from other species based on genome sequence comparisons. It is also recommended that (3) genetic variation within the species is documented with sequence data from several clearly different strains and (4) phenotypic features are described, and their variation documented with data from a relevant set of representative strains. Furthermore, it is encouraged that information is provided on (5) nodulation or pathogenicity phenotypes, as appropriate, with relevant gene sequences. These guidelines supplement the current rules of general bacterial taxonomy, which require (6) a name that conforms to the International Code of Nomenclature of Prokaryotes, (7) validation of the name by publication either directly in the International Journal of Systematic and Evolutionary Microbiology or in a validation list when published elsewhere, and (8) deposition of the type strain in two international culture collections in separate countries.

Using amplicon sequencing of rpoB for identification of inoculant rhizobia from peanut nodules
Letters in Applied Microbiology, 2021
To improve the nitrogen fixation, legume crops are often inoculated with selected effective rhizo... more To improve the nitrogen fixation, legume crops are often inoculated with selected effective rhizobia. However, there is large variation in how well the inoculant strains compete with the indigenous microflora in soil. To assess the success of the inoculant, it is necessary to distinguish it from other, closely related strains. Methods used until now have generally been based either on fingerprinting methods or on the use of reporter genes. Nevertheless, these methods have their shortcomings, either because they do not provide sufficiently specific information on the identity of the inoculant strain, or because they use genetically modified organisms that need prior authorization to be applied in the field or other uncontained environments. Another possibility is to target a gene that is naturally present in the bacterial genomes. Here we have developed a method that is based on amplicon sequencing of the bacterial housekeeping gene rpoB, encoding the beta‐subunit of the RNA polymerase, which has been proposed as an alternative to the 16S rRNA gene to study the diversity of rhizobial populations in soils. We evaluated the method under laboratory and field conditions. Peanut seeds were inoculated with various Bradyrhizobium strains. After nodule development, DNA was extracted from selected nodules and the nodulating rhizobia were analysed by amplicon sequencing of the rpoB gene. The analyses of the sequence data showed that the method reliably identified bradyrhizobial strains in nodules, at least at the species level, and could be used to assess the competitiveness of the inoculant compared to other bradyrhizobia.
Microbial Biotechnology, 2019

BMC Genomics, 2015
Background: The symbiotic phenotype of Neorhizobium galegae, with strains specifically fixing nit... more Background: The symbiotic phenotype of Neorhizobium galegae, with strains specifically fixing nitrogen with either Galega orientalis or G. officinalis, has made it a target in research on determinants of host specificity in nitrogen fixation. The genomic differences between representative strains of the two symbiovars are, however, relatively small. This introduced a need for a dataset representing a larger bacterial population in order to make better conclusions on characteristics typical for a subset of the species. In this study, we produced draft genomes of eight strains of N. galegae having different symbiotic phenotypes, both with regard to host specificity and nitrogen fixation efficiency. These genomes were analysed together with the previously published complete genomes of N. galegae strains HAMBI 540 T and HAMBI 1141. Results: The results showed that the presence of an additional rpoN sigma factor gene in the symbiosis gene region is a characteristic specific to symbiovar orientalis, required for nitrogen fixation. Also the nifQ gene was shown to be crucial for functional symbiosis in both symbiovars. Genome-wide analyses identified additional genes characteristic of strains of the same symbiovar and of strains having similar plant growth promoting properties on Galega orientalis. Many of these genes are involved in transcriptional regulation or in metabolic functions. Conclusions: The results of this study confirm that the only symbiosis-related gene that is present in one symbiovar of N. galegae but not in the other is an rpoN gene. The specific function of this gene remains to be determined, however. New genes that were identified as specific for strains of one symbiovar may be involved in determining host specificity, while others are defined as potential determinant genes for differences in efficiency of nitrogen fixation.
Systematic and Applied Microbiology, 2015
The family Rhizobiaceae accommodates the seven genera Rhizobium, Neorhizobium, Allorhizobium, Agr... more The family Rhizobiaceae accommodates the seven genera Rhizobium, Neorhizobium, Allorhizobium, Agrobacterium, Ensifer (syn. Sinorhizobium), Shinella and Ciceribacter. However, several socalled Rhizobium species do not exhibit robust phylogenetic positions. Rhizobium is extremely heterogeneous and is in need of major revision. Therefore, a phylogenetic examination of the family Rhizobiaceae by multilocus sequence analysis (MLSA) of four housekeeping genes among 100 strains of the family was undertaken. Based on the results we propose the delineation of the new genus Pararhizobium in the Rhizobiaceae family, and thirteen new species combinations:
Rhizobium and Other N ‐fixing Symbioses
eLS, 2010
... and Rosaceae, with a total of approximately 200 species being actinorhizal (forming a ... See... more ... and Rosaceae, with a total of approximately 200 species being actinorhizal (forming a ... See also Cell Signalling Mechanisms in Plants, Rhizobia, and Root-nodule Symbiosis: Molecular Basis of ... Infection threads continue to grow and divide and thus deliver new symbiosomes to ...

Systematic and applied microbiology, Jan 7, 2016
Previously, 159 bacterial strains were isolated from the root nodules of wild perennial Glycyrrhi... more Previously, 159 bacterial strains were isolated from the root nodules of wild perennial Glycyrrhiza legume species grown on 40 sites in central and north-western China, in which 57 strains were classified as "true symbionts" belonging to the genus Mesorhizobium based on amplified fragment length polymorphism (AFLP) genomic fingerprinting and partial sequences of the 16S rRNA gene [20]. In the present work, the phylogeny of Glycyrrhiza nodulating mesorhizobia was further examined by multilocus sequence analysis (MLSA). The concatenated gene tree of three housekeeping genes (16S rRNA, recA, and rpoB) of 59 strains including the 29 mesorhizobial test strains and 30 type mesorhizobial species, was constructed applying the maximum likelihood method and Bayesian inference. In the concatenated gene tree, the 29 test strains were distributed in seven separate clades. Seventeen test strains clustered with Mesorhizobium tianshanense, Mesorhizobium temperatum, Mesorhizobium muleiense...

Phylogeny of the Rhizobium–Allorhizobium–Agrobacterium clade supports the delineation of Neorhizobium gen. nov
Systematic and Applied Microbiology, 2014
The genera Agrobacterium, Allorhizobium, and Rhizobium belong to the family Rhizobiaceae. However... more The genera Agrobacterium, Allorhizobium, and Rhizobium belong to the family Rhizobiaceae. However, the placement of a phytopathogenic group of bacteria, the genus Agrobacterium, among the nitrogen-fixing bacteria and the unclear position of Rhizobium galegae have caused controversy in previous taxonomic studies. To resolve uncertainties in the taxonomy and nomenclature within this family, the phylogenetic relationships of generic members of Rhizobiaceae were studied, but with particular emphasis on the taxa included in Agrobacterium and the "R. galegae complex" (R. galegae and related taxa), using multilocus sequence analysis (MLSA) of six protein-coding housekeeping genes among 114 rhizobial and agrobacterial taxa. The results showed that R. galegae, R. vignae, R. huautlense, and R. alkalisoli formed a separate clade that clearly represented a new genus, for which the name Neorhizobium is proposed. Agrobacterium was shown to represent a separate cluster of mainly pathogenic taxa of the family Rhizobiaceae. A. vitis grouped with Allorhizobium, distinct from Agrobacterium, and should be reclassified as Allorhizobium vitis, whereas Rhizobium rhizogenes was considered to be the proper name for former Agrobacterium rhizogenes. This phylogenetic study further indicated that the taxonomic status of several taxa could be resolved by the creation of more novel genera.
Uploads
Papers by Abdollah Mousavi