Currently I am a Graduate Research Fellow in Allmicroalgae (Project: AlgaValor). Bachelor's degree in Biochemistry (Universidade de Coimbra). Master's degree in Biotechnology (Universidade Nova de Lisboa).
Frontiers in Bioengineering and Biotechnology, May 19, 2020
of pigment biosynthesis is a factor that might promote higher protein contents in this species. M... more of pigment biosynthesis is a factor that might promote higher protein contents in this species. Moreover, because of their higher protein and lower chlorophyll contents, the MT01 and MT02 strains are likely candidates to be feedstocks for the development of novel, innovative food supplements and foods.
Microalgae attract interest worldwide due to their potential for several applications. Scenedesmu... more Microalgae attract interest worldwide due to their potential for several applications. Scenedesmus is one of the first in vitro cultured algae due to their rapid growth and handling easiness. Within this genus, cells exhibit a highly resistant wall and propagate both auto- and heterotrophically. The main goal of the present work is to find scalable ways to produce a highly concentrated biomass of Scenedesmus rubescens in heterotrophic conditions. Scenedesmus rubescens growth was improved at the lab-scale by 3.2-fold (from 4.1 to 13 g/L of dry weight) through medium optimization by response surface methodology. Afterwards, scale-up was evaluated in 7 L stirred-tank reactor under fed-batch operation. Then, the optimized medium resulted in an overall productivity of 8.63 g/L/day and a maximum biomass concentration of 69.5 g/L. S. rubescens protein content achieved approximately 31% of dry weight, similar to the protein content of Chlorella vulgaris in heterotrophy.
This article is an open access article distributed under the terms and conditions of the Creative... more This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY
The microalga Chlorella vulgaris is a popular food ingredient widely used in the industry, with a... more The microalga Chlorella vulgaris is a popular food ingredient widely used in the industry, with an increasing market size and value. Currently, several edible strains of C. vulgaris with different organoleptic characteristics are commercialized to meet consumer needs. This study aimed to compare the fatty acid (FA) and lipid profile of four commercialized strains of C. vulgaris (C-Auto, C-Hetero, C-Honey, and C-White) using gas- and liquid-chromatography coupled to mass-spectrometry approaches, and to evaluate their antioxidant and anti-inflammatory properties. Results showed that C-Auto had a higher lipid content compared to the other strains and higher levels of omega-3 polyunsaturated FAs (PUFAs). However, the C-Hetero, C-Honey, and C-White strains had higher levels of omega-6 PUFAs. The lipidome signature was also different between strains, as C-Auto had a higher content of polar lipids esterified to omega-3 PUFAs, while C-White had a higher content of phospholipids with omega-6...
Microalgae have become a promising novel and sustainable feedstock for meeting the rising demand ... more Microalgae have become a promising novel and sustainable feedstock for meeting the rising demand for food and feed. However, microalgae-based products are currently hindered by high production costs. One major reason for this is that commonly cultivated wildtype strains do not possess the robustness and productivity required for successful industrial production. Several strain improvement technologies have been developed towards creating more stress tolerant and productive strains. While classical methods of forward genetics have been extensively used to determine gene function of randomly generated mutants, reverse genetics has been explored to generate specific mutations and target phenotypes. Site-directed mutagenesis can be accomplished by employing different gene editing tools, which enable the generation of tailor-made genotypes. Nevertheless, strategies promoting the selection of randomly generated mutants avoid the introduction of foreign genetic material. In this paper, we ...
Biomass harvesting is one of the most expensive steps of the whole microalgal production pipeline... more Biomass harvesting is one of the most expensive steps of the whole microalgal production pipeline. Therefore, the present work aimed to understand the effect of salinity on the growth performance, biochemical composition and sedimentation velocity of Tetraselmis sp. CTP4, in order to establish an effective low-cost pilot-scale harvesting system for this strain. At lab scale, similar growth performance was obtained in cultures grown at salinities of 5, 10 and 20 g L -1 NaCl. In addition, identical settling velocities (2.4-3.6 cm h -1 ) were observed on all salinities under study, regardless of the growth stage. However, higher salinities (20 g L -1 ) promoted a significant increase in lipid contents in this strain compared to when this microalga was cultivated at 5 or 10 g L -1 NaCl. At pilot-scale, cultures were cultivated semi-continuously in 2.5-m 3 tubular photobioreactors, fed every four days, and stored in a 1-m 3 harvesting tank. Upon a 24-hour settling step, natural sedimentation of the microalgal cells resulted in the removal of 93% of the culture medium in the form of a clear liquid containing only vestigial amounts of biomass (0.07 AE 0.02 g L -1 dry weight; DW). The remaining culture was recovered as a highly concentrated culture (19.53 AE 4.83 g L -1 DW) and wet microalgal paste (272.7 AE 18.5 g L -1 DW). Overall, this method provided an effective recovery of 97% of the total biomass, decreasing significantly the harvesting costs.
Thraustochytrids have gained increasing relevance over the last decades, due to their fast growth... more Thraustochytrids have gained increasing relevance over the last decades, due to their fast growth and outstanding capacity to accumulate polyunsaturated fatty acids (PUFAs), particularly docosahexaenoic acid (DHA). In this context, the present work aimed to optimize the growth performance and DHA yields by improving the culture medium of Aurantiochytrium sp. AF0043. Accordingly, two distinct culture media were optimized: (i) an inorganic optimized medium (IOM), containing only monosodium glutamate and glucose as nitrogen and carbon sources, respectively; and (ii) an organic and sustainable waste-based optimized medium (WOM), containing corn steep powder and glycerol, added in fed-batch mode, as nitrogen and carbon sources, respectively. Overall, the lab-scale optimization allowed to increase the biomass yield 1.5-fold and enhance DHA content 1.7-fold using IOM. Moreover, WOM enabled a 2-fold increase in biomass yield and a significant improvement in lipid contents, from 22.78% to 31...
Microalgal biomass has gained increasing attention in the last decade for various biotechnologica... more Microalgal biomass has gained increasing attention in the last decade for various biotechnological applications, including human nutrition. Certified organic products are currently a growing niche market in which the food industry has shown great interest. In this context, this work aimed at developing a certified organic culture medium for the production of autotrophic Chlorella vulgaris biomass. A preliminary assay in 2 L bubble column photobioreactors was performed in order to screen different commercial organic substrates (OS) at a normalized concentration of N (2 mmol L−1). The highest growth performance was obtained using EcoMix4 and Bioscape which showed similar biomass concentrations compared to the synthetic culture medium (control). In order to meet the nutrient needs of Chlorella, both OS underwent elemental analyses to assess their nutrient composition. The laboratory findings allowed the development of a final organic culture medium using a proportion of Bioscape/EcoMix...
Industrial production of Phaeodactylum tricornutum for CO2 mitigation: biomass productivity and photosynthetic efficiency using photobioreactors of different volumes
Uploads
Papers by Mafalda Trovão