@inproceedings{chen-etal-2025-enhancing-cross,
title = "Enhancing Cross-Tokenizer Knowledge Distillation with Contextual Dynamical Mapping",
author = "Chen, Yijie and
Liu, Yijin and
Meng, Fandong and
Chen, Yufeng and
Xu, Jinan and
Zhou, Jie",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2025",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-acl.419/",
doi = "10.18653/v1/2025.findings-acl.419",
pages = "8005--8018",
ISBN = "979-8-89176-256-5",
abstract = "Knowledge Distillation (KD) has emerged as a prominent technique for model compression. However, conventional KD approaches primarily focus on homogeneous architectures with identical tokenizers, constraining their applicability in cross-architecture scenarios. As for the cross-tokenizer KD, the differences in the tokenizers give rise to two fundamental challenges: (1) sequence misalignment caused by divergent tokenization strategies, and (2) mismatched vocabulary size and composition. While existing probability-matching methods attempt to address these issues, their efficacy remains limited due to suboptimal alignment in both the sequence and vocabulary aspects. To overcome these limitations, we propose Contextual Dynamic Mapping (CDM), a novel cross-tokenizer distillation framework that employs contextual information to enhance sequence alignment precision and dynamically improves vocabulary mapping. We evaluated the effectiveness of our approach across five advanced and widely-used model families (\textit{i.e,}LLama3, Phi3, Gemma2, OPT and Qwen2), which were configured into three distinct teacher-student pairs. Our method shows significant advantages over existing cross-tokenizer distillation baselines across diverse benchmarks, including instruction-following, code generation and math. Notably, our analysis reveals that combining conventional same-tokenizer distillation and cross-tokenizer distillation through CDM yields further performance improvements."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chen-etal-2025-enhancing-cross">
<titleInfo>
<title>Enhancing Cross-Tokenizer Knowledge Distillation with Contextual Dynamical Mapping</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yijie</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yijin</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fandong</namePart>
<namePart type="family">Meng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yufeng</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jinan</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jie</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-256-5</identifier>
</relatedItem>
<abstract>Knowledge Distillation (KD) has emerged as a prominent technique for model compression. However, conventional KD approaches primarily focus on homogeneous architectures with identical tokenizers, constraining their applicability in cross-architecture scenarios. As for the cross-tokenizer KD, the differences in the tokenizers give rise to two fundamental challenges: (1) sequence misalignment caused by divergent tokenization strategies, and (2) mismatched vocabulary size and composition. While existing probability-matching methods attempt to address these issues, their efficacy remains limited due to suboptimal alignment in both the sequence and vocabulary aspects. To overcome these limitations, we propose Contextual Dynamic Mapping (CDM), a novel cross-tokenizer distillation framework that employs contextual information to enhance sequence alignment precision and dynamically improves vocabulary mapping. We evaluated the effectiveness of our approach across five advanced and widely-used model families (i.e,LLama3, Phi3, Gemma2, OPT and Qwen2), which were configured into three distinct teacher-student pairs. Our method shows significant advantages over existing cross-tokenizer distillation baselines across diverse benchmarks, including instruction-following, code generation and math. Notably, our analysis reveals that combining conventional same-tokenizer distillation and cross-tokenizer distillation through CDM yields further performance improvements.</abstract>
<identifier type="citekey">chen-etal-2025-enhancing-cross</identifier>
<identifier type="doi">10.18653/v1/2025.findings-acl.419</identifier>
<location>
<url>https://aclanthology.org/2025.findings-acl.419/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>8005</start>
<end>8018</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Enhancing Cross-Tokenizer Knowledge Distillation with Contextual Dynamical Mapping
%A Chen, Yijie
%A Liu, Yijin
%A Meng, Fandong
%A Chen, Yufeng
%A Xu, Jinan
%A Zhou, Jie
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Findings of the Association for Computational Linguistics: ACL 2025
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-256-5
%F chen-etal-2025-enhancing-cross
%X Knowledge Distillation (KD) has emerged as a prominent technique for model compression. However, conventional KD approaches primarily focus on homogeneous architectures with identical tokenizers, constraining their applicability in cross-architecture scenarios. As for the cross-tokenizer KD, the differences in the tokenizers give rise to two fundamental challenges: (1) sequence misalignment caused by divergent tokenization strategies, and (2) mismatched vocabulary size and composition. While existing probability-matching methods attempt to address these issues, their efficacy remains limited due to suboptimal alignment in both the sequence and vocabulary aspects. To overcome these limitations, we propose Contextual Dynamic Mapping (CDM), a novel cross-tokenizer distillation framework that employs contextual information to enhance sequence alignment precision and dynamically improves vocabulary mapping. We evaluated the effectiveness of our approach across five advanced and widely-used model families (i.e,LLama3, Phi3, Gemma2, OPT and Qwen2), which were configured into three distinct teacher-student pairs. Our method shows significant advantages over existing cross-tokenizer distillation baselines across diverse benchmarks, including instruction-following, code generation and math. Notably, our analysis reveals that combining conventional same-tokenizer distillation and cross-tokenizer distillation through CDM yields further performance improvements.
%R 10.18653/v1/2025.findings-acl.419
%U https://aclanthology.org/2025.findings-acl.419/
%U https://doi.org/10.18653/v1/2025.findings-acl.419
%P 8005-8018
Markdown (Informal)
[Enhancing Cross-Tokenizer Knowledge Distillation with Contextual Dynamical Mapping](https://aclanthology.org/2025.findings-acl.419/) (Chen et al., Findings 2025)
ACL